K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Sửa lại \(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\) rồi c/m BĐT phụ 

\(\frac{a^2}{a^2+2}\ge\frac{4}{9}a-\frac{1}{9}\) bằng cách quy đồng, phân tích

Sau đó tương tự rồi cộng theo vế là ra

#Tks Vũ...Châu đã nhắc nhé

22 tháng 9 2017

Từ \(a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow abc\le1\)

Khi đó ta có BĐT 

\(\frac{a}{a+2bc}+\frac{b}{b+2ac}+\frac{c}{c+2ab}\ge1\)

\(\Leftrightarrow\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge1\)

Áp dụng BĐT Cauchy-SChwarz dạng ENGel ta có;

\(VT=\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=1=VP\)

KHi \(a=b=c=1\)

7 tháng 4 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}\)=1

16 tháng 10 2020

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c 

24 tháng 5 2020

Dấu "=" xảy ra <=> a = b = c

24 tháng 5 2020

Áp dụng Bunhiacopxki dạng phân thức:

VT \(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\) = 1

8 tháng 2 2021

\(ĐK:a,b,c\ne0\)

Ta có: \(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)\(\Leftrightarrow\left(\frac{b^2+c^2-a^2}{2bc}+1\right)+\left(\frac{c^2+a^2-b^2}{2ca}-1\right)+\left(\frac{a^2+b^2-c^2}{2ab}-1\right)=0\)\(\Leftrightarrow\frac{\left(b+c\right)^2-a^2}{2bc}+\frac{\left(c-a\right)^2-b^2}{2ca}+\frac{\left(a-b\right)^2-c^2}{2ab}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{2ca}-\frac{\left(a-b+c\right)\left(b+c-a\right)}{2ab}=0\)\(\Leftrightarrow\left(b+c-a\right)\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\)

Trường hợp 1: \(b+c-a=0\)thì

+) \(\frac{\left(b+c\right)^2-a^2}{2bc}=\frac{\left(b+c-a\right)\left(a+b+c\right)}{2bc}=0\Rightarrow\frac{b^2+c^2-a^2}{2bc}=-1\)

+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)

\(\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)

Điều này chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1

Trường hợp 2: \(c+a-b=0\) thì 

+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)

+) \(\frac{\left(c+a\right)^2-b^2}{2ca}=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=-1\)

\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)

Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1

Trường hợp 3: \(a+b-c=0\)

+) \(\frac{\left(c-a\right)^2-b^2}{2ca}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)

+) \(\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=-1\)

\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)

Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1 (đpcm)

8 tháng 2 2021

cho mình hỏi tại sao từ

\(\left(b+c-a\right)\cdot\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)

lại có thể suy ra được

\(\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\) vậy ?

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

20 tháng 11 2016

Ta cm \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Áp dụng vào bài ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)\(\Rightarrow\frac{a^3+b^3}{2ab}\ge\frac{a+b}{2}\)

Tương tự ta cũng được:

\(\frac{b^3+c^3}{2bc}\ge\frac{b+c}{2};\frac{c^3+a^3}{2ac}\ge\frac{c+a}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=\frac{2\left(a+b+c\right)}{2}=VP\)

Dấu = khi a=b=c

P/s: Ngoài ra có thể dùng Bđt AM-GM

11 tháng 3 2020

Làm cách khác mà không biết có đúng không!!! Thật sự là bài này tự nghĩ chứ không tham khảo ở đâu!!!

\(VT=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)

\(=\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}+\frac{a^2+b^2}{2c}\)

\(\ge\frac{2bc}{2a}+\frac{2ca}{2b}+\frac{2ab}{2c}=\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\)

Ta đi chứng minh \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Thật vậy: \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc.ca}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca.ab}{bc}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab.bc}{ca}}=2b\)

Cộng từng vế của các bđt trên:

\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Vậy \(\text{Σ}_{cyc}\frac{a^3+b^3}{2ab}\ge a+b+c\)

Dấu "=" khi a = b = c