Tính
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
2] Tìm số nguyên n lớn nhất sao cho
\(n^{200}\)<\(5^{300}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(n^{200}< 5^{300}\)( với n lớn nhất )
\(\left(n^2\right)^{100}< \left(5^3\right)^{100}\)
\(\left(n^2\right)^{100}< 125^{100}\)
\(n^2< 125\)
\(\Rightarrow n^2\in\left\{0;1;2;...;124\right\}\)
mà n lớn nhất \(\Rightarrow n^2=124\)
\(\Rightarrow n=\sqrt{124}\)
ta co 5^300=(5^3)^100=125^100
n^200=(n^2)^100
nen n^2<125 suy ra n=11
Ta có:
n200 < 5300
=> (n2)100 < (53)100
=> n2 < 53 = 125
Mà n lớn nhất => n2 lớn nhất => n2 = 121
=> n = 11
5)
Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)
Theo bài ra ta có:
a chia 3 dư 1=> a + 2 chia hết cho 3
a chia 4 dư 2=> a + 2 chia hết cho 4
a chia 5 dư 3=> a + 2 chia hết cho 5
a chia 6 dư 4=> a + 2 chia hết cho 6
a chia hết cho 11
=> a + 2 thuộc BC(3; 4; 5; 6)
a chia hết cho 11
BCNN(3; 4; 5; 6) = 60
=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }
=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }
Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418
Vậy số tự nhiên cần tìm là 418.
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}\cdot\left(2^{18}+2^8\right)}{2^{12}\cdot\left(1+2^{10}\right)}=\frac{2^{18}+2^8}{1+2^{10}}\)
\(1;\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}\left(2^{18}+2^8\right)}{2^{12}\left(1+2^{22}\right)}=\frac{2^{18}+2^8}{1+2^{22}}\)
\(2;n^{200}< 5^{300}\Rightarrow\left(n^2\right)^{100}< 125^{100}\)
Vì n lớn nhất
\(\Rightarrow n^2=121=11^2\)
\(\Rightarrow n=11\)