K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

[ 3x - 7]2x-3 = [ 3x -7 ]2x-1

=> 2x - 3 = 2x - 1

=> 2x - 2x = -1 + 3

=. 0 = 2 ( vô lí )

Vậy trong trường hợp này không có giá trị x

20 tháng 4 2022

...

NV
23 tháng 4 2022

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

2 tháng 9 2018

a)

( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )

= ( 6x^2 + 33x - 10x - 55 ) - ( 6x^2 + 14x + 9x + 21 )

= ( 6x^2 + 23x - 55 ) - ( 6x^2 + 23x + 21 )

= 6x^2 + 23x - 55 - 6x^2 - 23x - 21

= ( 6x^2 - 6x^2 ) + ( 23x - 23x ) - ( 55 + 21 )

= -76

=> với mọi x thì giá trị của biểu thức luôn bằng -76

=> đpcm

b)c) tương tự

2 tháng 9 2018

cái này khá dài nên mik ns lun nha 

: bạn nhân đa thức vs đa thức làm bình thường vậy thôi . kết quả là 1 số tự nhiên thì nó kg phụ thuộc vào biến nha 

   chuk hok tốt 

23 tháng 3 2023

loading...  

11 tháng 11 2021

a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)

\(\Rightarrow3x-6x^2+6x+14=29\)

\(\Rightarrow-6x^2+9x-15=0\)

\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)

\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)

Vậy \(S=\varnothing\)

11 tháng 11 2021

a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

30 tháng 1 2017

bài tập tết nâng cao phải ko

mk cũng có nhưng chưa làm dc

27 tháng 1 2020

tìm 2 số nguyên a và b biết :a+b=-1 và a.b=-12.Giup mình nha

NV
21 tháng 7 2021

c.

\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
21 tháng 7 2021

a.

Đề bài ko chính xác, pt này ko giải được

b.

ĐKXĐ: \(x\ge-\dfrac{7}{2}\)

\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)

Đặt \(\sqrt{2x+7}=t\ge0\)

\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)

\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1+2\sqrt{2}\)

15 tháng 12 2018

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

 \(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

  \(=-73\)ko phụ thuộc vào biến x

Vậy

15 tháng 12 2018

A = 6x +33x - 10x - 55 -6x -14x -9x - 21

   = 76 -> Ðpcm

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>x=\(\dfrac{1}{5}\)