cho x, y thỏa mãn 16x²-9y²>=144. chứng minh rằng l2x-y+1l>=2√5 -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)
\(\frac{1}{y^2+1}\ge\frac{1}{2}\)
\(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)
Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1 => x2 < 1
tương tự vs y và z nhé
Có 4x2 + y2 = (2x)2 + y2
=> (4x2 + y2)(22 + 12) =( (2x)2 + y2) (22 + 12)
Áp dụng bất đẳng thức Bunhiakốpxki
=>( (2x)2 + y2) (22 + 12) >= (4x + y)2 = 1
=> (4x2 + y2)*5 >= 1
=> 4x2 + y2 >= 1/5
>= là lớn hơn hoặc bằng
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+4\geq 2\sqrt{4x^2}=2|2x|\geq 4x$
$y^2+1\geq 2\sqrt{y^2}=2|y|\geq 2y$
$\Rightarrow x^2+y^2+5\geq 4x+2y=2(x+y)+2x\geq 2.3+2.2=10$
$\Rightarrow x^2+y^2\geq 5$
Ta có đpcm
Dấu "=" xảy ra khi $(x,y)=(2,1)$
bài 1 ta có
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\) ( BDT Bunhia )
do đó
\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
vậy ta có đpcm.
bài 2.
ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )
\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)
suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2