K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Ta có :  1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)

                                                                      \(\frac{1}{y^2+1}\ge\frac{1}{2}\)

                                                                       \(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)

Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1  => x2 < 1 
tương tự vs y và z nhé 

25 tháng 10 2015

Có 4x+ y2 = (2x)2 + y2

=> (4x+ y2)(2+ 12) =( (2x)2 + y2) (2+ 12)

Áp dụng bất đẳng thức Bunhiakốpxki

=>( (2x)2 + y2) (2+ 12) >= (4x + y)2 = 1     

=> (4x+ y2)*5 >= 1

=> 4x2 + y>= 1/5

>= là lớn hơn hoặc bằng


AH
Akai Haruma
Giáo viên
30 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM:
$x^2+4\geq 2\sqrt{4x^2}=2|2x|\geq 4x$

$y^2+1\geq 2\sqrt{y^2}=2|y|\geq 2y$

$\Rightarrow x^2+y^2+5\geq 4x+2y=2(x+y)+2x\geq 2.3+2.2=10$

$\Rightarrow x^2+y^2\geq 5$

Ta có đpcm

Dấu "=" xảy ra khi $(x,y)=(2,1)$

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

11 tháng 4 2016

+ x+y=2 ta có bảng

x012
y210

+khi x=0, y=2 ta có BPT 04 + 24 >= 2

+ khi x= 1, y=1 ta có BPT 14 + 1>=2

khi x = 2, y=0 ta có BPT 2+ 0>=2

Nên x4 + y4 >=2

13 tháng 4 2021

có phải thuộc số nguyên dâu bạn