K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

    \(M=\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\)

\(\Leftrightarrow M=\frac{1}{1-\sqrt{x}}-\frac{\sqrt{x}+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

\(\Leftrightarrow M=\frac{1+\sqrt{x}-\sqrt{x}-2}{1-x}\)

\(\Leftrightarrow M=\frac{-1}{1-x}\)

\(\Leftrightarrow M=\frac{1}{x-1}\)

b) Để M nhận giá trị nguyên

\(\Leftrightarrow\frac{1}{x-1}\inℤ\)

\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{0;2\right\}\)

Mà \(x>0\)

Vậy để M nguyên \(\Leftrightarrow x=2\)

a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)

b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)

\(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)

nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)

\(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1(nhận)

Vậy: để M>0 thì x>1

10 tháng 4 2020

cm mẫu > 0 ms lm vầy đc

p/s: nhờ nhân vậy tui rớt huyện đó

10 tháng 4 2020

Thì nó lớn hơn 0 tui mới làm vậy mà. Bất pt chứ có phải pt đâu

31 tháng 8 2020

Đề bài đâu bn ơi 

Nếu rút gọn thì mình làm cho

Ta có: \(P=\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{1-\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)         (    ĐKXĐ: \(x\ge1\))

    \(\Leftrightarrow P=\left(\frac{1-x}{\sqrt{x}}\right):\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)+\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right)\)

    \(\Leftrightarrow P=\frac{1-x}{\sqrt{x}}.\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{1-x+\sqrt{x}-1}\)

    \(\Leftrightarrow P=\left(1-x\right).\frac{\sqrt{x}+1}{\sqrt{x}-x}\)

    \(\Leftrightarrow P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right).\frac{\sqrt{x}+1}{\sqrt{x}.\left(1-\sqrt{x}\right)}\)

   \(\Leftrightarrow P=\frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

   \(\Leftrightarrow P=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)

31 tháng 8 2020

P=\(\frac{1-x}{\sqrt{x}}:\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{1-x}{\sqrt{x}}:\frac{1-x+x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}\)

P=\(\left(\sqrt{x}+1\right)^2\)

P=\(x+2\sqrt{x}+1\)

26 tháng 6 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)

\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)

\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)

\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)

Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)

Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )

\(\Rightarrow\sqrt{x}-1>0\)

\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)

29 tháng 8 2020

Bài làm:

Ta có: 

\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)

\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)

21 tháng 8 2019
https://i.imgur.com/7Gi05HK.jpg
21 tháng 8 2019
https://i.imgur.com/lpCsO1V.jpg
19 tháng 6 2019

link đây: )

https://www.pornhub.com/view_video.php?viewkey=ph5925b69f43688