tìm GTLN của biểu thức
\(A=5-8x-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=(-x^2+8x-7)/(2x+2)
P-1=-(x^2-8x+7+x^2+1)/2(x+1)
P-1=-(2x^2-8x+8)/2(x+1)
P-1=-2(x^2-4x+4)/2(x+1)
P-1=-2(x-2)^2/2(x+1)
Vì -2(x-2)^2/2(x+1) ≥0
=> P-1≥0
=>P≥1
Dấu = xảy ra khi x-2=0 =>x=2
Vậy Pmin = 3 khi x = 2
1:
a: A=x^2+4x+4+13
=(x+2)^2+13>=13
Dấu = xảy ra khi x=-2
b; =x^2-8x+16+84
=(x-4)^2+84>=84
Dấu = xảy ra khi x=4
c: =x^2+x+1/4+19/4
=(x+1/2)^2+19/4>=19/4
Dấu = xảy ra khi x=-1/2
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
\(A=-2x^2+8x-15\)
\(-A=2x^2-8x+15\)
\(-A=2\left(x^2-4x+4\right)+7\)
\(-A=2\left(x-2\right)^2+7\)
Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge7\)
\(\Leftrightarrow A\le-7\)
Dấu "=" xảy ra khi :
\(x-2=0\Leftrightarrow x=2\)
Vậy \(A_{Max}=7\Leftrightarrow x=2\)
M = -x2 - 8x + 5
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Dấu "=" xảy ra <=> x = -4
Vậy MaxM = 21
\(M=-x^2-8x\)\(+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\)
\(\Rightarrow-\left(x+4\right)^2\le0\)
\(\Rightarrow M=-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy GTLN của M = 21 khi x = - 4
\(A=\left(-x^2-8x-16\right)+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\)
Mà \(-\left(x+4\right)^2\le0\)\(\forall x\)
\(\Rightarrow A\le21\)\(\forall x\)
Dấu = xảy ra khi\(x=-4\)
Vậy MAX \(A=21\Leftrightarrow x=-4\)