K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)

\(\Leftrightarrow12\sqrt{x-1}=24\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=4+1\)

\(\Leftrightarrow x=5\left(tm\right)\)

b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))

\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)

\(\Leftrightarrow-4\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=4-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

3 tháng 3 2016

 √(2x²+8x+6) + √(x²-1) = 2(x+1) TXĐ: x € (-∞;-3] U [1;+∞) U {-1} 
Từ pt => x≥ -1. Kết hợp với TXĐ đc: x ≥1 hoặc x = -1 
Bình phương 2 vế: 
2√[2(x²-1)(x²+4x+3)] = x²-1 
Từ đây suy ra x² ≥ 1, lại bình phương 2 vế tiếp: 
8(x²-1)(x²+4x+3) = x^4 - 2x²+1 
<=> 7x^4 + 32x³ + 18x² -32x -25 = 0 
<=> 7x^4 - 7x² + 32x³ - 32x +25x² - 25 = 0 
<=> 7x²(x²-1) + 32x(x²-1) +25(x²-1) = 0 
<=> (x²-1)(7x²+32x+25) = 0 
<=> (x²-1)(x+1)(7x+25) = 0 
<=> x = ±1 (x = -25/7 loại) 

3 tháng 3 2016

hình như bạn hiểu sai đề rồi. viết lại cho rõ nhé:(8x-6)căn (x-1)=(2+căn (x-2))(x+4 căn(x-2)+3)

9 tháng 3 2018

1 ) đặt ẩn phụ 

căn(x+4) = a

căn(4-x) = b

=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x 

Thay vào phương trình giải rất dễ

2) điều kiện xác định " x lớn hơn hoặc = 1

từ ĐKXĐ => vế trái lớn hơn hoặc = 1

=> 2 - x lớn hơn hoặc = 1

=> x nhỏ hơn hoặc = 1

kết hợp ĐKXĐ => x = 1

3) mk chưa biết làm

24 tháng 4 2017

Câu 1:
png.latex?\sqrt{2+\sqrt{3}}^{x}+\sqrt{2-\sqrt{3}}^{x}=2^{x} 
png.latex?\Leftrightarrow%20\sqrt{\frac{2+\sqrt{3}}{4}}^{x}%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}%20=1 
Dễ thấy phương trình có x=2 là 1 nghiệm.
Mặt khác ta có: vế trái luôn nghịch biến do
png.latex?y%27=\sqrt{\frac{2+\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2+\sqrt{3}}{4}})%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2-\sqrt{3}}{4}})%20%3C0%20\forall%20x 
Vậy phương trình có nghiệm duy nhất x=2

Câu 2:
png.latex?2^{x}+2^{-x}+2=4x-x^2%20\Leftrightarrow%202^{x}+\frac{1}{2^{x}}+2=4x-x^2 
Áp dụng bất đẳng thức Côsi ta có:
png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%202^{x}+\frac{1}{2^{x}}+2%20\geq%204 
png.latex?\Rightarrow%204x-x^{2}\geq%204%20\Leftrightarrow%20-(x-2)^{2}\geq%200 
Dễ thấy chỉ xảy ra khi png.latex?x-2=0%20\Leftrightarrow%20x=2 
Mặt khác khi thay x=2 vào vế trái được VT bằng png.latex?%202^{2}+\frac{1}{2^{2}}+2%20%3E4 
Vậy kết luận phương trình đã cho vô nghiệm.

Câu 3:
Tương tự phương pháp như câu 2 ta có:
png.latex?2cos{\frac{x^{2}+x}{6}}=2^{x}+2^{-x} 
png.latex?\Leftrightarrow%201+cos{\frac{x^{2}+x}{3}}=2^{x}+\frac{1}{2^{x}} 
Vế phải png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%201+cos{\frac{x^{2}+x}{3}}\geq%202 
png.latex?\Leftrightarrow%20cos{\frac{x^{2}+x}{3}}%20\geq%201 mà png.latex?-1%20\leq%20cos{\frac{x^{2}+x}{3}}%20\leq%201 
Vậy nên chỉ có thể xảy ra khi png.latex?cos{\frac{x^{2}+x}{3}}=1(1) 
Mặt khác ta có để png.latex?2^{x}+\frac{1}{2^{x}}%20=2%20\Leftrightarrow%20x=0 
Thay x=0 vào (1) được png.latex?cos{\frac{0}{3}}=1 (Thoả mãn)
Vậy phương trình đã cho có nghiệm x=0

Câu 4
png.latex?\frac{8^{x}+2^{x}}{4^{x}-2}=5 
Điều kiện là mẫu khác 0 hay x khác png.latex?\frac{1}{2} 
Với điều kiện trên ta có:
png.latex?8^{x}+2^{x}=5(4^{x}-2)%20\Leftrightarrow%20(2^{x})^{3}-5(2^{x})^{2}+2^{x}+10=0 
Bạn đặt png.latex?t=2^{x}(t%3E0) ta được phương trình sau
png.latex?t^{3}-5t^{2}+t+10=0 
Giải phương trình được png.latex?t=2,t=\frac{3+\sqrt{29}}{2} ,png.latex?t=\frac{3-\sqrt{29}}{2} (loại vì t>0)
Vậy cuối cùng giải ra nghiệm của phương trình là:
png.latex?x=1 và png.latex?x=log_{2}%20\frac{3+\sqrt{29}}{2}
 
 
19 tháng 9 2023

hết cứu đi mà làm

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết thế này khó dịch quá.

28 tháng 5 2023

mình sửa lại rồi đó ạ