K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

ta có : \(\widehat{A}+\widehat{B}=180\)=>  AD // BC ( 2 góc trong cùng phía có tổng 180)  => ABCD là hình thang

mặt khác: CB=CD => ABCD là hình bình hành ( hình thang có 2 cạnh kề bằng nhau là hình bình hành)

Dễ thấy AC là đường chéo của ABCD =>  AC là tia phân giác của \(\widehat{A}\)(đường chéo của hình bình hành là tia pg của 2 đỉnh )

8 tháng 8 2020

hình như sai đề bn ạ

ko ra đủ dữ liệu

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

15 tháng 7 2023

a) Ta có : AB=BC và CD=DA (đề bài)

⇒ BD là đường trung trực của AC

b) Ta có : AB=BC (đề bài)

⇒ Δ ABC cân tại B

⇒ Góc BAC = Góc BCA

Tương tự ta chứng minh Góc DAC = Góc DCA (CD=AD...)

mà Góc A = Góc BAC + Góc DAC

      Góc C = Góc BCA+ Góc DCA

⇒ Góc A = Góc C

mà A + B + C +D =360; B=100o ; D=80o

⇒ A + C =360 - (100 + 80) = 240

⇒ A = C = 240 : 2 = 120o  

16 tháng 6 2018

a) có góc B + góc ADC = 180 độ

góc ADC + hóc EDC = 180 độ 

=> góc B = góc EDC 

xét tam giác ABC và tam giác EDC có 

AB=ED( gt)

góc B = góc EDC (cmt)

CB=CD(gt)

=> tam giác ABC = tam giác EDC (c.g.c)