K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

P M N A B C D O H I

Qua điểm O kẻ 1 đường thẳng vuông góc với dây cung AB tại H => H là trung điểm AB

Ta có: PM và PN là 2 tiếp tuyến từ P kẻ đến (O) => Tứ giác MONP nội tiếp đường tròn.

=> ^ONM = ^OPM (1)

Xét tứ giác MHOP: ^OHP = ^OMP = 900 => Tứ giác MHOP nội tiếp đường tròn

=> ^OPM + ^OHM = 1800 (2)

Từ (1) và (2) => ^ONM + ^OHM = 1800 => Tứ giác MHON nội tiếp đường tròn.

=> ^HOM= ^HNM (Cùng chắn cung HM) hay ^HOI = ^HNC (3)

Xét tứ giác HOAI: ^OHA = ^OIA = 900 => Tứ giác HOAI nội tiếp đường tròn

=> ^HOI = ^HAI (Cùng chắn cung IH) (4)

Từ (3) và (4) => ^HNC = ^HAI hay ^HNC = ^HAC => Tứ giác ACHN nội tiếp đường tròn.

=> ^AHC = ^ANC = ^ANM (5)

Do tứ giác BMAN nội tiếp (O) => ^ANM = ^ABM (6)

Từ (5) và (6) => ^AHC=^ABM hay ^AHC = ^ABD.

Ta thấy 2 góc trên nằm ở vị trí đồng vị => HC // BD 

Xét tam giác BAD: H là trung điểm AB; HC // BD (C thuộc AD) => C là trung điểm của AD (đpcm).

11 tháng 4 2023

È là EF nha mng

 

loading...  loading...  loading...  loading...  loading...  loading...  

19 tháng 4 2019

\(\widehat{MKH}=\widehat{MCH}\)

c) Tam giác COA=tam giác BOA ( tự chứng minh)

=> \(\widehat{COA}=\widehat{BOA}\)(1)

Ta có: MK//OC ( cùng vuông AC)

     MH//OA ( cùng vuông BC)

=> \(\widehat{KMH}=\widehat{AOC}\)(2)

Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)

Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)

Tứ giác KMHC nội tiếp ( tự chứng minh)

=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)

Tứ giác MIBH nội tiếp ( tự chứng minh)

=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)

Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)

Từ (5), (6), (7)

=> \(\widehat{MKH}=\widehat{MHI}\)(8)

Xét tam giác KMH và tam giác HMI có:

\(\widehat{KMH}=\widehat{HMI}\)(theo (4))

\(\widehat{MKH}=\widehat{MHI}\)( theo (8)

=> tam giác KMH đông dạng tam giác HMI

góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

góc A chung

góc NBD=góc AEB

=>ΔABD đồng dạg vơi ΔAEB

=>AB/AE=AD/AB=BD/EB

Chứng minh tương tự, ta được: ΔACD đồng dạng với ΔAEC

=>AC/AE=CD/CE

mà AB=AC

nên AD/AB=AD/AC

=>BD/BE=CD/CE

=>BD*CE=BE*CD

góc M chung

góc MCN=góc MBC

=>ΔMCN đồng dạng với ΔMBC

=>MC/MB=MN/MC

=>MB*MN=MC^2=MA^2

=>MA/MB=MN/MA

=>ΔMAN đồng dạng với ΔMBA

=>góc MAN=góc MBA

=>BC là tiếp tuyến của (K)

=>BC vuông góc CK

a: góc DCE=1/2*sđ cung DE

góc DPE=1/2(sđ cung DE-sđ cung CF)

góc CAF=1/2*sđ cug CF)

=>góc DPE=góc DCE-góc CAF

=>góc DPE+góc CAF=góc DCE

b: Xét ΔBAC và ΔBDA có

góc BAC=góc BDA

góc ABC chung

=>ΔBAC đồng dạng với ΔBDA

=>BA/BD=BC/BA

=>BA^2=BD*BC=PB^2

=>BP/BC=BD/BP

=>ΔBPD đồng dạng với ΔBCP

=>góc BPC=góc BDP

=>góc BPC=góc PEF

=>EF//AP

Xet ΔCMO và ΔICO có

góc CMO=góc ICO

góc IOC chung

=>ΔCMO đồng dạng với ΔICO

=>CM/IC=MO/CO

=>CM/MO=IC/CO

=>CM*CO=MO*IC

=>CM^2*CO=MC*MO*IC

=>\(\dfrac{CM^2}{MO\cdot IC}=\dfrac{CM}{CO}\left(1\right)\)

ΔIEM đồng dạng với ΔCOM do góc IEM=góc MOC và góc EMI=góc OMC

=>IM/IE=CM/CO

=>\(\dfrac{IM\cdot IO}{MC^2}=\dfrac{IE}{IC}\)

mà MA^2=MI*MO

nên \(\dfrac{NA^2}{NC^2}=\dfrac{IE}{IC}\)

nên MB^2/MC^2=IE/IC

=>\(MB\cdot\sqrt{IC}=MC\cdot\sqrt{IE}\)