K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Dễ chứng minh ΔABC~ΔADE (g.g)

\(\frac{AB}{AD}=\frac{BC}{DE}=\frac{AC}{AE}\)\(BC=\frac{AC.DE}{AE};AB=\frac{AC.AD}{AE}\)

Cần chứng minh \(BC.DE=AB.AD+AC.AE\)

\(\frac{DE^2.AC}{AE}=\frac{AD^2.AC}{AE}+AC.AE\)

\(DE^2=AD^2+AE^2\)

Suy ra tam giác ADE vuông tại A, hay tam giác ABC vuông tại A

Bạn xem lại đề :D Mình đến đây ko giải được nữa

11 tháng 7 2019

Nếu △ ABC vuông tại A thì dễ quá. Bài này lúc đầu teacher mk đọc đề sai, phải là "... trên nửa mặt phẳng bờ DC có chứa điểm B..."

4 tháng 4 2019

A B C H D x E

Chứng minh phản chứng nhé_._

Giả sử  \(HD>HE\Rightarrow\widehat{HED}>\widehat{BDx}\Rightarrow\widehat{HED}>15^0\left(1\right)\)

Mặt khác:\(HD>HE\Rightarrow HA>HE\left(AH=DH\right)\Rightarrow\widehat{AEH}>\widehat{EAH}\Rightarrow\widehat{AEH}>\frac{60^0}{2}=30^0\left(2\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)

Từ (1);(2) suy ra \(\widehat{BED}>30^0+15^0\Rightarrow\widehat{BED}>45^0\Rightarrow\widehat{ABD}=\widehat{BED}+\widehat{BDE}>45^0+15^0=60^0\)(Trái với giả thiết)

Giả sử \(HD< HE\Rightarrow\widehat{HED}< \widehat{HDx}\Rightarrow\widehat{HED}< 15^0\left(3\right)\)

Mặt khác:\(HD< HE\Rightarrow HA< HE\left(HD=HA\right)\Rightarrow\widehat{AEH}< \frac{60^0}{2}\Rightarrow\widehat{AEH}< 30^0\left(4\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)

Từ (3);(4) suy ra \(\Rightarrow\widehat{BED}=\widehat{AEH}+\widehat{HED}< 15^0+30^0=45^0\Rightarrow\widehat{ABD}< \widehat{BED}+\widehat{BDE}=45^0+15^0=60^0\)(Trái với giả thiết)

Vậy HD=HE.

15 tháng 4 2020

ko còn cách nào khác hả bn

9 tháng 8 2023

a) Ta có: ���^=���^(��) mà hai góc đó là hai góc so le trong nên

suy ra ��//�� (1)

���^=���^(��) mà hai góc đó là hai góc so le trong nên suy ra ��//�� (2)

Từ (1) và (2) suy ra Ax và Ay cùng // BC.

Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng

bờ  AB không chứa điểm C

 Ax và Ay là hai tia đối nhau.

b) Vì Ax và Ay là hai tia đối nhau (cmt) mà ��//�� và ��//��

 nên suy ra ��//��

Mà ��⊥� nên suy ra