K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

18 tháng 7 2018

\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)

\(\Rightarrow\frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)

\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)

\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{8.11}+...+\frac{1}{302.305}-\frac{1}{305.308}\)

\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\) 

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.205.308}\)

\(\Rightarrow \frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)

\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)

\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{11.14}+...+\frac{1}{302.305}-\frac{1}{305.308}\)

\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\)

\(\Rightarrow B< \frac{1}{40}.\frac{5}{6}\Leftrightarrow B< \frac{1}{48}\)

16 tháng 3 2021

câu b bài 2:

\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)

\(=\dfrac{1}{5}\)

câu a bài 2:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)

\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 1:

$A=1.2+2.3+3.4+...+201.202$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$

$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$

$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$

$=201.202.203$

$\Rightarrow A=\frac{201.202.203}{3}=2747402$

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 2:

$S=4.5+5.6+6.7+....+100.101$

$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$

$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$

$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$

$=100.101.102-3.4.5$

$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$

15 tháng 4 2018

8C=8/3.7.11+8/7.11.15+8/11.15.19+8/15.19.23+8/19.23.27+8/23.27.31

8C=1/3.7-1/7.11+1/7.11-1/11.15+1/11.15-1/15.19+1/15.19-1/19.23+1/19.23+-1/23.27-1/27.31

8C=1/3.7-1/27.31

8C=1/21-1/837

8C=272/5859

C=34/5859