Chứng tỏ rằng 1 số nguyên tố lớn hơn 3 có dạng 6k+1 hoặc 6k+5 (k thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)
+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số
+) Nếu p chia cho \(6\) dư \(1\) thì \(p=6k+1\)
+) Nếu p chia cho \(6\) dư \(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.
+) Nếu p chia cho \(6\) dư \(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư \(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư\(5\) thì \(p=6k+5\)
Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :
\(p=6k+1\) hoặc \(p=6k+5\)
b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.
Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.
b)
Giả sử p là số nguyên tố lớn hơn 3 và 8p+1 cũng là số nguyên tố. Ta cần chứng minh rằng 4p+1 là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k là số nguyên dương).
Trường hợp 1: p = 3k+1
Khi đó, 8p+1 = 8(3k+1)+1 = 24k+9 = 3(8k+3), là hợp số vì chia hết cho 3 và lớn hơn 3. Điều này mâu thuẫn với giả thiết 8p+1 là số nguyên tố.
Trường hợp 2: p = 3k+2
Khi đó, 8p+1 = 8(3k+2)+1 = 24k+17. Ta xét 4p+1:
4p+1 = 4(3k+2)+1 = 12k+9 = 3(4k+3), là hợp số vì chia hết cho 3 và lớn hơn 3.
Vậy trong cả hai trường hợp, ta đều suy ra 4p+1 là hợp số.
a) Số nguyên tố p khi chia cho 6 có thể dư 1;2; 3; 4; 5
=> p có thể có dạng 6k + 1; 6k + 2; 6k + 3; 6k + 4; 6k + 5
Mà 6k + 2 chia hết cho 2; 6k + 3 chia hết 3; 6k + 4 chia hết cho 2; và p > 3
=> p không thể có dạng 6k + 2; 6k + 3; 6k + 4
Vậy p có thể có dạng 6k + 1; 6k + 5
b) Ta có 8p; 8p + 1; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
Mà p là số nguyên tố; 8 không chia hết cho => 8p không chia hết cho 3
8p + 1 là snt => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2= 2.(4p + 1) => 4p + 1 chia hết cho 3 Hay 4p + 1 là hợp số
quá dễ dàng
a) Mọi số tự nhiên lớn hơn 3 khi chia cho 6 chỉ có thể xảy ra một trong 6 trường hợp : dư 0, dư 1, dư 2, dư 3, dư 4, dư 5
+) nếu p chia 6 thì dư 0 thì p = 6k \(\Rightarrow\)p là hợp số
+) nếu p chia 6 thì dư 1 thì p = 6k + 1
+) nếu p chia 6 thì dư 2 thì p = 6k + 2 \(\Rightarrow\)p là hợp số
+) nếu p chia 6 thì dư 3 thì p = 6k + 3 \(\Rightarrow\)p là hợp số
+) nếu p chia 6 dư 4 thì p = 6k + 4 \(\Rightarrow\)p là hợp số
+) nếu p chia 6 dư 5 thì p = 6k + 5
Vậy mọi số nguyên tố lớn hơn 3 chia cho 6 thì chỉ có thể dư 1 hoặc dư 5 tức là p = 6k + 1 hoặc p = 6k + 5
b) Nếu p có dạng = 6k + 1 thì 8p + 1 = 8 . ( 6k + 1 ) + 1 = 48k + 9 \(⋮\)3, là hợp số. Vậy p không có dạng 6k + 1 mà p có dạng 6k + 5,
khi đó 4p + 1 = 4 . ( 6k + 5 ) + 1 = 24k + 21k \(⋮\)3 . Rõ ràng 4p + 1 là hợp số
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình