(𝔁 +\(\dfrac{1}{2}\)) + (𝔁 +\(\dfrac{1}{4}\)) + (𝔁 +\(\dfrac{1}{8}\)) + ... + (𝔁 +\(\dfrac{1}{1024}\)) = 1
Ai lm đúng mik sẽ kb nnha!
\(^∀^)メ(^∀^)ノ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{4}{15}:\dfrac{4}{7}< x< \dfrac{2}{5}\times\dfrac{10}{3}\\ \Leftrightarrow\dfrac{7}{15}< x< \dfrac{4}{3}\\ \Leftrightarrow x=1\)
\(b,\dfrac{3}{5}\times\dfrac{3}{7}+\dfrac{2}{5}\times\dfrac{4}{7}=\dfrac{9}{35}+\dfrac{8}{35}=\dfrac{17}{35}\)
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
Số số hạng là 10-1+1=10(số)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
=>\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
=>\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)
=>\(2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{10}}\)
=>\(A=1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)
\(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{4}\right)+...+\left(x+\dfrac{1}{1024}\right)=1\)
=>\(\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)=1\)
=>\(10x+\dfrac{1023}{1024}=1\)
=>\(10x=\dfrac{1}{2024}\)
=>\(x=\dfrac{1}{20240}\)
Hầu như lúc nào mik hỏi lên đều là bn lm trc tiên lun á Thịnh¯\_(ツ)_/¯