Phân tích thành nhân tử \(16y^2-x^2-2x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+4x^2+4x-16y^2\)
\(=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-16y^2\)
\(=x^2.\left(x+2\right)+2x.\left(x+2\right)-16y^2\)
\(=\left(x+2\right).\left(x^2+2x\right)-16y^2\)
\(=x.\left(x+2\right).\left(x+2\right)-\left(4y\right)^2\)
\(=x.\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left[\sqrt{x}.\left(x+2\right)\right]^2-4y^2\)
\(=\left[\sqrt{x}.\left(x+2\right)-4y\right].\left[\sqrt{x}.\left(x+2\right)+4y\right]\)
Tham khảo nhé~
nếu đưa vô căn phải có điều kiện là x > 0
\(x^3+4x^2+4x-16y^2=x\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x\sqrt{x}+2\sqrt{x}\right)^2-\left(4y\right)^2=\left(x\sqrt{x}+2\sqrt{x}-4y\right)\left(x\sqrt{x}+2\sqrt{x}+4y\right)\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(---\)
\(x^2-16y^2+4x+4\)
\(=\left(x^2+4x+4\right)-16y^2\)
\(=\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x+2-4y\right)\left(x+2+4y\right)\)
\(=\left(x-4y+2\right)\left(x+4y+2\right)\)
\(---\)
\(3x^2+6xy+3y^2-12\)
\(=3\left(x^2+2xy+y^2-4\right)\)
\(=3\left[\left(x+y\right)^2-2^2\right]\)
\(=3\left(x+y-2\right)\left(x+y+2\right)\)
\(---\)
\(4x^3+4x^2+x\)
\(=x\left(4x^2+4x+1\right)\)
\(=x\left(2x+1\right)^2\)
\(a,=x\left(y-3\right)+y\left(y-3\right)=\left(x+y\right)\left(y-3\right)\\ b,=\left(x+2\right)^2-16y^2=\left(x+4y+2\right)\left(x-4y+2\right)\)
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
2.\(\left(x^2-16y^2\right)-3x+12y=\left(x-4y\right)\left(x+4y\right)-3\left(x-4y\right)=\left(x-4y\right)\left(x+4y-3\right)\)
4.\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
16y2 - 4x2 - 12x - 9 = 16y2 - (4x2 + 12x + 9) = 16y2 - (2x + 3)2 = (4y - 2x - 3)(4y + 2x + 3)
16y2-x2-2x-1
=16y2-(x2+2x+1)
=(4y)2-(x+1)2
=[4y-(x+1)][4y+(x+1)]
=(4y-x-1)(4y+x+1)
\(16y^2-x^2-2x-1=\left(4y\right)^2-\left(x^2+2x+1\right)=\left(4y\right)^2-\left(x+1\right)^2=\left(4y-x-1\right)\left(4y+x+1\right)\)