Tìm a, b để f(x) = x^3 + ax^2 - bx + 12 chia hết cho g(x) = x^2 + x - 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)

\(\frac{F\left(x\right)}{G\left(x\right)}=\frac{ax^3+bx^2+10x-4}{x^2+x-2}\)
\(=\frac{a\cdot x^3+a\cdot x^2-2a\cdot x+\left(b-a\right)\cdot x^2+\left(b-a\right)\cdot x-2\left(b-a\right)+\left(10-b+3a\right)x+2\left(b-a\right)-4}{x^2+x-2}\)
\(=a\cdot x+\left(b-a\right)+\frac{\left(3a-b+10\right)x+2\left(b-a\right)-4}{x^2+x-2}\)
Để f(x) chia hết cho g(x) thì \(\begin{cases}3a-b+10=0\\ 2\left(b-a\right)-4=0\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ b-a=2\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ a-b=-2\end{cases}\)
=>\(\begin{cases}3a-b-a+b=-10+2\\ a-b=-2\end{cases}\Rightarrow\begin{cases}2a=-8\\ b=a-\left(-2\right)=a+2\end{cases}\Rightarrow\begin{cases}a=-4\\ b=a+2=-4+2=-2\end{cases}\)

Lời giải:
Để \(f(x)\) chia hết cho $g(x)$ có nghĩa là $f(x)$ viết được dưới dạng \(f(x)=g(x).Q(x)\), trong đó, \(Q(x)\) là đa thức thương.
\(\Leftrightarrow ax^3+bx^2+10x-4=(x^2+x-2)Q(x)=(x-1)(x+2)Q(x)\)
Thay \(x=1\Rightarrow a+b+6=0\Leftrightarrow a+b=-6\) \((1)\)
Thay \(x=-2\Rightarrow -8a+4b-24=0\Leftrightarrow -8a+4b=24\) \((2)\)
Từ \((1),(2)\Rightarrow a=-4,b=-2\)
Vậy \((a,b)=(-4,-2)\)
Bn tham khảo nhé:
f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1