Câu 1 tính
\(\frac{3^7.8^5}{6^6.\left(-2\right)^{12}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
Giải:
\(\dfrac{3^7.8^5}{6^6.\left(-2\right)^{12}}\)
\(=\dfrac{3^7.8^5}{6^6.2^{12}}\)
\(=\dfrac{3^7.2^{15}}{3^6.2^6.2^{12}}\)
\(=\dfrac{3^7.2^{15}}{3^6.2^{18}}\)
\(=\dfrac{3}{2^3}\)
\(=\dfrac{3}{8}\)
Vậy ...
\(\dfrac{3^7.8^5}{6^6.\left(-2\right)^{12}}=\dfrac{3^7.2^{15}}{2^6.3^6.2^{12}}=\dfrac{3}{8}\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
Câu 1: \(\frac{2^{-1}+3^{-1}}{2^{-1}-3^{-1}}+\frac{2^{-1}.1}{2^3}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}+\frac{\frac{1}{2}}{8}=\frac{\frac{5}{6}}{\frac{1}{6}}+\frac{1}{6}=\frac{30}{6}+\frac{1}{6}=\frac{81}{16}\)
Câu 2:\(\frac{-1}{3}-1+\frac{\frac{1}{4}}{2}=\frac{-4}{3}+\frac{1}{8}=\frac{-29}{24}\)
Câu 3:\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{10}\left(2.3^2-3\right)}=\frac{2^{11}.3^{10}\left(2+2.5\right)}{2^{11}.3^{10}\left(2.3^2-3\right)}=\frac{4}{5}\)
Câu 4: \(\frac{1}{1-\frac{1}{1-2^{-1}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{1}{2}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}=-1+\frac{3}{5}=\frac{-2}{5}\)
#Đoàn Thị Huyền Đan ơi: Câu 1 với câu 4 thì đúng rồi còn câu 2 với 3 thì sai k/q rồi nhé!
\(\frac{3^7.8^5}{6^6.\left(-2\right)^{12}}\)
\(=\frac{3^7.\left(2^3\right)^5}{2^6.3^6.2^{12}}\)
\(=\frac{3^7.2^{15}}{2^{18}.3^6}\)
\(=\frac{3}{2^3}=\frac{3}{8}\)