Cho đa thức: Q(x) = a^3+2x^4-5x^2-2x^3-6x+3 (a là hằng số). Tính Q(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1
=-x^4-5x^3-7x^2+2x-1
Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5
=x^4+5x^3+6x^2-2x+5
\(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-6x^4+2x^2-x\)
\(P\left(x\right)=\left(-2x^4-6x^4\right)-\left(7x+x\right)+2x^2+\dfrac{1}{2}\)
\(P\left(x\right)=-8x^4-8x+2x^2+\dfrac{1}{2}\)
______
\(Q\left(x\right)=3x^3-x^4-5x^2+x^3-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=\left(3x^3+x^3\right)-x^4-5x^2-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=4x^3-x^4-5x^2-6x+\dfrac{3}{4}\)
Ta có: \(P\left(x\right)=-5x^4+3x^3-2x^2+\dfrac{1}{2}x-1\)
\(Q\left(x\right)=6x^4+3x^3-4x^2+\dfrac{1}{2}x-4\)
\(\Rightarrow A\left(x\right)=P\left(x\right)-Q\left(x\right)=-11x^4+2x^2+3\)
a: \(P\left(x\right)=x^4+x^3-x^2+2x-5\)
\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)
b: \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=-4x^3+2x^2+4x\)
c: Bậc của H(x) là 3
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
\(Q\left(1\right)=a^3+2\cdot1^4-5\cdot1^2-2\cdot1^3-6\cdot1+3\\ =a^3+2\cdot1-5\cdot1-2\cdot1-6\cdot1+3\\ =a^3+2-5-2-6+3\\ =a^3-8\)
\(Q\left(1\right)=a^3+2\cdot1^4-5\cdot1^2-2\cdot1^3-6\cdot1+3\)
\(=a^3+2-5-2-6+3\)
\(=a^3-8\)