Chứng minh rằng:
2√3(√2-3)+(2+√3)^2+6√3 = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 5 + 5² + 5³ + ... + 5³⁰
= (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5²⁹.(1 + 5)
= 5.6 + 5³.6 + ... + 5²⁹.6
= 6.(5 + 5³ + ... + 5²⁹) ⋮ 6 (1)
Do C ⋮ 6 ⇒ C ⋮ 2 (2)
Lại có C = (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 30 + 5².(5 + 5²) + ... + 5²⁸.(5 + 5²)
= 30 + 5².30 + ... + 5²⁸.30
= 30.(1 + 5² + ... + 5²⁸)
= 10.3.(1 + 5² + ... + 5²⁸) ⋮ 10 (3)
Từ (1), (2) và (3) suy ra C ⋮ 2; C ⋮ 6; C ⋮ 10
a ) ( n + 5 ) . ( n + 8 ) = n . n + n . 8 + 5 . n + 5 . 8 = n^2 + 8n + 5n + 40
Nếu n là số lẻ thì n^2 cũng là số lẻ ; 5n cũng là số lẻ . Còn lại đều là số chẵn
Vậy n^2 + 5n sẽ thành số chẵn .
Chẵn + chẵn + chẵn = chẵn .
Mà số chẵn thì chi hết cho 2 .
Nếu n là số chẵn thì n^2 cũng là số chẵn ; 5n cũng là số chẵn . Vậy tổng trên tất cả đều là số chẵn
=> tổng chẵn và chia hết cho 2 .
b ) n . ( n + 4 ) . ( n + 8 ) = ( n . n + n . 4 ) . ( n . n + n . 8 ) = ( n^2 + 4n ) . ( n^2 + 8n ) = n^2 ( 8n + 4n ) = n^2 . 12n
Vì trong tích trên có 12 = 3 . 4 nên tích trên chia hết cho 3 kéo theo n . ( n + 4 ) . ( n + 8 ) chia hết cho 3 .
Bài 2 :
a ) { x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5 . 3 }^3 = 1
=> x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 9.49 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 441 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( -47897473 ) - 7.5 ]^3 - 5.3 = 1
x^2 - [ 47897509 - 7.5 ]^3 - 5.3 = 1
Phần lũy thừa này máy mình không tính được .
b ) 5^x-2 - 3^2 = 2^4
5^x-2 - 9 = 16
5^x-2 = 16 + 9
5^x-2 = 25
5^x-2 = 5^2
=> x - 2 = 2
x = 2 + 2
x = 4
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^17 + 2^18 + 2^19 + 2^20
= 30 + ... + 2^16(2+2^2+2^3+2^4)
= 30 + ... + 2^16. 30
= 30.(1+...+2^16) CHIA HẾT CHO 30
=> A chia hết cho cả 5 và 6
\(A=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ =30+2^4.30+...+2^{16}.30\\ =30.\left(1+2^4+...+2^{16}\right)=6.5.\left(1+2^4+...+2^{16}\right)⋮6;⋮5\left(đpcm\right)\)
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{2}\left(4+2\sqrt{3}\right)}=\sqrt{\frac{1}{2}}\sqrt{3+2\sqrt{3}+1}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{\frac{1}{2}}.\left(\sqrt{3}+1\right)=\frac{\sqrt{3}}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\left(đpcm\right)\)