ai giúp tui với bài tìm a,b,c là số nguyên dương biết 1/a + 1/b + 1/c = 4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a +1/b +1/c =4/5 ⇒1/2 +3/10 =1/2 +1/4 +1/20 =4/5
Vậy a=2;b=4;c=20
Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\)
Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)
\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)
Bài 1:
a) |x-2|+(-3)=-1
|x-2| =-1+3
|x-2| =2
=> x-2=2 hoặc x-2=-2
x =2+2 x =-2+2
x =4 x =0
Vậy x=4 hoặc x=0
b)|3-x|-(-14)=25
|3-x|=25+(-14)
|3-x|=11
=>3-x=11 hoặc 3-x=-11
x=3-11 x=3-(-11)
x=-8 x=14
Vậy x=-8 hoặc x=14
Các câu c,d làm tương tự nha, mk ko phải làm hộ cho bạn chép đâu!
Quy luật tìm x với |x|=a suy ra x=a hoặc x=-a (a thuộc N*)
VD: |2-x|=1 => 2-x=1 hoặc -1
Chú ý: |-2|=2 ; |2|=2 . Vì thế công thức trên chỉ áp dụng cho tìm số chưa biết.
Bài 2:
a) |12-x|-|-23|=-19
|12-x|-23 =-19
|12-x| =-19+23
|12-x| =4
=>12-x=4 hoặc 12-x=-4
x=12-4 x=12-(-4)
x=8 x=16
Vậy x=8 hoặc x=16
b) 6-|x+1|=(-4)+|-10|
6-|x+1|=(-4)+10
6-|x+1|=6
|x+1|=6-6
|x+1|=0
=> x+1=0 (ko có TH2 vì làm gì có ''-0'')
x =0-1
x =-1
Câu nào ko đúng thì ... thông cảm, mk làm như để tự ôn thi thôi <3
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Lời giải:
Không mất tính tổng quát giả sử $a\geq b\geq c$.
$\Rightarrow \frac{1}{a}\leq \frac{1}{b}\leq \frac{1}{c}$
Khi đó:
$\frac{4}{5}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{3}{c}$
$\Rightarrow 4c\leq 15<16\Rightarrow c<4$
Mà $c$ nguyên dương nên $c=1,2,3$
Nếu $c=1$ thì:
$\frac{1}{a}+\frac{1}{b}=\frac{4}{5}-\frac{1}{c}=\frac{4}{5}-1=\frac{-1}{5}<0$ (vô lý do $a>0, b>0$)
Nếu $c=2$ thì:
$\frac{1}{a}+\frac{1}{b}=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}$
Do $\frac{1}{a}\leq \frac{1}{b}$ nên:
$\frac{3}{10}=\frac{1}{a}+\frac{1}{b}\leq \frac{2}{b}$
$\Rightarrow 3b< 20< 21\Rightarrow b< 7$
Thử các TH: $b=2,3,4,5,6$ thấy với $b=4$ thì $a=20$; $b=5$ thì $a=10$
Nếu $c=3$ thì:
$\frac{1}{a}+\frac{1}{b}=\frac{4}{5}-\frac{1}{3}=\frac{7}{15}\leq \frac{2}{b}$
$\Rightarrow 7b\leq 30< 35$
$\Rightarrow b< 5$. Mà $b\geq c=3$ nên $b=3$ hoặc $b=4$
Thử 2 TH trên thấy đều không thỏa mãn.
Vậy $(a,b,c)=(10,5,2), (20, 4,2)$ và hoán vị