K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Ta có A chia hết cho 27

=> A chia hết cho 3 và 9

ta có A=3(333..333333333)=99999999......99999

mà 99999.....9999999 chia hết cho 3 và 9

nên A chia hết cho 27

25 tháng 9 2017

Ta có A chia hết cho 27. 

=> A chia hết cho 3 và 9. 

Ta có A = 3{3333.........333} = 99999...999 

mà  99999...999 chia hết cho 3 và 9  

=> A chia hết cho 27.

17 tháng 9 2017

Sửa đề nhé:Chứng minh số đó ko chia hết cho 27

Ta có:\(A=3333...3\)(n chứ số 3)

\(=3.1111...1\)(n chữ số 1)

Để A chia hết cho 27 thì A chia hết ch 3 và 9

\(3.11...111⋮3\)\(3.111...1⋮̸9\) nên \(A⋮̸27\left(đpcm\right)\)

17 tháng 9 2017

Ta có A=99999....99999

mà ta có A chia hết cho 27

nên a chia hết cho 3 và 9

Mà 999...9999 chia hết cho 3 và 9

=> A chia hết cho 27

15 tháng 11 2021

Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1

Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1

15 tháng 11 2021
Bạn nhìn nhầm đề rồi kẻ bí ẩn