Cho A = n chữ số 3 {3333...33}. Chứng minh A chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nhé:Chứng minh số đó ko chia hết cho 27
Ta có:\(A=3333...3\)(n chứ số 3)
\(=3.1111...1\)(n chữ số 1)
Để A chia hết cho 27 thì A chia hết ch 3 và 9
Vì \(3.11...111⋮3\) mà\(3.111...1⋮̸9\) nên \(A⋮̸27\left(đpcm\right)\)
Ta có A=99999....99999
mà ta có A chia hết cho 27
nên a chia hết cho 3 và 9
Mà 999...9999 chia hết cho 3 và 9
=> A chia hết cho 27
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1
Ta có A chia hết cho 27
=> A chia hết cho 3 và 9
ta có A=3(333..333333333)=99999999......99999
mà 99999.....9999999 chia hết cho 3 và 9
nên A chia hết cho 27
Ta có A chia hết cho 27.
=> A chia hết cho 3 và 9.
Ta có A = 3{3333.........333} = 99999...999
mà 99999...999 chia hết cho 3 và 9
=> A chia hết cho 27.