Cho A = (x + 3√x)/(x - 25) + 1/(√x + 5) và B = (√x + 2)/(√x - 5) với x > = 0, x # 25
a) Rút gọn biểu thức A. Tìm x để P = A/B = 4/7
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1: Thay x=16 vào A, ta được:
\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)
P>1/3
=>P-1/3>0
=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{1}{3}>0\)
=>\(\dfrac{3\sqrt{x}-3-\sqrt{x}-2}{3\left(\sqrt{x}+2\right)}>0\)
=>2 căn x-5>0
=>x>25/4
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)
\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)
b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Leftrightarrow x-4=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-6=0\)
=>x=9
bài 1 tính giá trị biểu thức
( - 25 ) nhân ( -3 ) nhân x với x = 4
\(\left(-25\right).\left(-3\right).4\)
\(=\left(-25\right).4.\left(-3\right)\)
\(=-100.\left(-3\right)=300\)
( -1 ) nhân ( -4 ) nhân 5 nhân 8 nhân y với y =25
\(\left(-1\right).\left(-4\right).5.8.25\)
\(=4.5.8.25=4.25.5.8\)
\(=100.40=40000\)
( 2ab mũ 2 ) : c với a =4 ; b= -6 ; c =12
\(\left(2.4.\left(-6\right)\right)^2:12\)
\(=\left(-48\right)^2:12\)
\(=2304:12=192\)
[ ( -25 ) nhân ( - 27 ) nhân ( -x ) ] : y với x = 4 ; y = -9
\(\left[\left(-25\right).\left(-27\right).\left(-4\right)\right]:-9\)
\(=-2700:\left(-9\right)\)
\(=300\)
(a mũ 2 _ b mũ 2) : ( a + b ) nhân ( a _ b ) với a + 5 , b = -3
\(\left(5^2-\left(-3\right)^2\right):\left(5-3\right).\left(5+3\right)\)
\(=16:2.8\)
\(=8.8=64\)
Với x ≥ 0 , x ≠ 25 thì B = 3 x + 5 + 20 − 2 x x − 15 = 3 x + 5 + 20 − 2 x x + 5 x − 5
= 3 x − 5 + 20 − 2 x x + 5 x − 5 = 3 x − 15 + 20 − 2 x x + 5 x − 5 = x + 5 x + 5 x − 5 = 1 x − 5
(điều phải chứng minh)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Để P nguyên
\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)
\(\Leftrightarrow3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)
Mà \(\sqrt{x}\ge0,\forall x\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy để P nguyên \(\Leftrightarrow x=1\)