K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{MAB}=\widehat{MAC}\)

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM\(\perp\)BC

Ta có: AM\(\perp\)BC

IH\(\perp\)BC

Do đó: AM//IH

=>\(\widehat{BIH}=\widehat{BAM}\)

mà \(\widehat{BAC}=2\cdot\widehat{BAM}\)(AM là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BIH}\)

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

5 tháng 6 2016

Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A

=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)

Ta có: IH vuông góc BC (gt) (1)

          AM vuông góc BC (cmt) (2)

=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)

=> góc BIH = góc BAM (đồng vị)

Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)

=> góc BIH = 2 lần góc BAC

Vậy góc BIH = 2 lần góc BAC

30 tháng 11 2021

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:

          AB = AC (gt)

          \(\widehat{BAM}=\widehat{CAM}\)(AM là tia phần giác của góc A)

          AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)

b) Ta có: \(\Delta AMB=\Delta AMC\)(theo a)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

Lại có: \(IH\perp BC\Rightarrow AM//IH\)

\(\Rightarrow\widehat{BIH}=\widehat{BAM}\)(2 gó so le trong)

Mà \(\widehat{BAM}=\frac{1}{2}\cdot\widehat{BAC}\)(AM là tia p/g của góc A)

\(\Rightarrow\widehat{BIH}=\frac{1}{2}\cdot\widehat{BAC}\)

hay \(\widehat{BAC}=2\widehat{BIH}\)

16 tháng 12 2015

it so hard 

it very hard to me

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với