Cho tam giac nhon ABC ( AB>AC) .Tren canh AC lay diem D sao cho AB=AD , ke phan giac goc BAC cat BD tai I , cat BC tai E .
a)Cm tam giac AIB =tam giac AID
b) Goi F la giao diem DI VA AB . Cm AF=AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Bn Quý j đó ơi vẽ hình ra cko mik nha
Vẽ hình mk ms giải đc
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a: Xét ΔAIB và ΔAID có
AB=AD
\(\widehat{IAB}=\widehat{IAD}\)
AI chung
Do đó: ΔAIB=ΔAID
b: Sửa đề; F là giao điểm của DE với AB
Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
=>EB=ED và \(\widehat{ABE}=\widehat{ADE}\)
Xét ΔADF và ΔABC có
\(\widehat{ADF}=\widehat{ABC}\)
AD=AB
\(\widehat{DAF}\) chung
Do đó: ΔADF=ΔABC
=>AF=AC