cho s= \(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+......+\(\dfrac{1}{1+2+3+.....+200}\). Tính s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{200^2}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{199.200}=\dfrac{199}{200}>\dfrac{3}{4}\)
1:
\(S=-\left(1-\dfrac{1}{10}+\dfrac{1}{10^2}-...-\dfrac{1}{10^{n-1}}\right)\)
\(=-\left[\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\right]\)
\(u_1=\left(-\dfrac{1}{10}\right)^0;q=-\dfrac{1}{10}\)
\(\left(-\dfrac{1}{10}\right)^0+\left(-\dfrac{1}{10}\right)^1+...+\left(-\dfrac{1}{10}\right)^{n-1}\)
\(=\dfrac{\left(-\dfrac{1}{10}\right)^0\left(1-\left(-\dfrac{1}{10}\right)^{n-1}\right)}{-\dfrac{1}{10}-1}\)
\(=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{-\dfrac{11}{10}}\)
=>\(S=\dfrac{1-\left(-\dfrac{1}{10}\right)^{n-1}}{\dfrac{11}{10}}\)
2:
\(S=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{n-1}\)
\(u_1=1;q=\dfrac{1}{3}\)
\(S_{n-1}=\dfrac{1\cdot\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\left(\dfrac{1}{3}\right)^{n-1}\right)\)
\(1,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{10}:\left(-1\right)=-\dfrac{1}{10}\\u_1=-1\end{matrix}\right.\)
Vậy \(S=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=-\dfrac{10}{11}\)
\(2,\) Ta có \(\left\{{}\begin{matrix}q=\dfrac{u_2}{u_1}=\dfrac{1}{3}\\u_1=1\end{matrix}\right.\)
Vậy \(S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{n-1}}=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\)
\(S^2=\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\\ \text{Ta có:}\\ \dfrac{1}{2}< \dfrac{2}{3}\\ \dfrac{3}{4}< \dfrac{4}{5}\\ \dfrac{5}{6}< \dfrac{6}{7}\\ ...\\ \dfrac{199}{200}< \dfrac{200}{201}\\ \Rightarrow S^2< \left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{200}{201}\right)\\ \Leftrightarrow S^2< \dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{199}{200}\cdot\dfrac{200}{201}\\ \Leftrightarrow S^2< \dfrac{1\cdot2\cdot3\cdot...\cdot200}{2\cdot3\cdot4\cdot...\cdot201}\\ \Leftrightarrow S^2< \dfrac{1}{201}< \dfrac{1}{200}\)
Vậy ...
1: \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{3^9}\)
\(=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^9\)
u1=1; q=1/3
\(S_9=\dfrac{u1\cdot\left(1-q^9\right)}{1-q}=\dfrac{1\left(1-\left(\dfrac{1}{3}\right)^9\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3^9}\right)\)
2:
\(S=\left(\dfrac{1}{5}\right)^0+\left(\dfrac{1}{5}\right)^1+...+\left(\dfrac{1}{5}\right)^7\)
\(u1=1;q=\dfrac{1}{5}\)
\(S_7=\dfrac{1\cdot\left(1-q^7\right)}{1-q}=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}=\dfrac{5}{4}\left(1-\dfrac{1}{5^7}\right)\)
1, Ta có \(\dfrac{\dfrac{1}{3}}{1}=\dfrac{1}{3};\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3};...\)
-> Là cấp số nhân, q = 1/3
Ta có \(S_9=1.\dfrac{1-\left(\dfrac{1}{3}\right)^9}{1-\left(\dfrac{1}{3}\right)}\approx1,5\)
b, Ta có \(\dfrac{\dfrac{1}{5}}{1}=\dfrac{1}{5};\dfrac{\dfrac{1}{25}}{\dfrac{1}{5}}=\dfrac{1}{5};...\)
-> Là cấp số nhân, q = 1/5
\(S_7=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}\approx1,25\)
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
Có vẻ đề chưa chuẩn lắm em ơi. Phân số cuối cùng tử phải là 1 chứ sao lại là 200.
vâng . cô sửa giúp em