Cho ΔABC có đường tuyến AM, G là trọng tâmΔ. Biết AM = 12cm. Tính AG, GM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì G là trọng tâm tam giác ABC nên GM = 1/2 AG = 1/2.10 = 5cm. Chọn B
Xét tam giác ABC có AM là đường trung tuyến
=>AG= 2/3AM
AM=6:2/3
AM=9
=>GM=1/3AM
GM=1/3*9
GM=3
AM=
vì G là trọng tâm của tam giác ABC
AM là đường trung tuyến của tam giác ABC
=> AM = \(\dfrac{3}{2}AG\)
AM = \(\dfrac{3}{2}.9\)
AM = \(\dfrac{27}{2}=13,5\left(cm\right)\)
=>GM = \(\dfrac{1}{3}AM\)
GM = \(\dfrac{1}{3}.13,5\) = 4,5 (cm)
Theo tính chất đường trung tuyến trong tam giác vuông thì ta có:
\(AG=2.GM=\frac{2}{3}AM=\frac{2}{3}.12=8\)(cm)
\(\Rightarrow GM=8:2=4\)(cm)
a) Vì G là trọng tâm của tam giác AEF với đường trung tuyến AM nên theo định lí 3 đường trung tuyến cắt nhau tại trọng tâm ta có :
\(\dfrac{{AG}}{{AM}} = \dfrac{2}{3}\)\( \Rightarrow \dfrac{{GM}}{{AM}} = 1 - \dfrac{2}{3} = \dfrac{1}{3}\)
b) Vì \(\dfrac{{AG}}{{AM}} = \dfrac{2}{3}\) và \(\dfrac{{GM}}{{AM}} = \dfrac{1}{3}\)(theo câu a)
\( \Rightarrow \dfrac{{GM}}{{AG}} = \dfrac{1}{2}\)
c) Vì \(\dfrac{{GM}}{{AG}} = \dfrac{1}{2}\)(chứng minh b)
\( \Rightarrow \dfrac{{AG}}{{GM}} = 2\)
a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :
BC2 =AC2+AB2
hay BC^2 =12^2+9^2
BC^2=81+144=225
BC=15CM
b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc
=> AM=1/2 BC
hay AM=1/2.15
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc
=> GM=1/3 AM ( tính chất đường trung tuyến )
GM=1/3.7,5
GM=2,5 cm
a, Ta có \(BC^2=AB^2+AC^2=5^2+12^2=13^2\)
\(\Rightarrow BC=13cm\)
b, \(AG=\dfrac{2}{3}AM=\dfrac{2}{3}\times7,5=5cm\)
Xét ΔABC có
AM là đường trung tuyến
G là trọng tâm
Do đó: \(AG=\dfrac{2}{3}AM=\dfrac{2}{3}\cdot12=8\left(cm\right)\)
Ta có: AG+GM=AM
=>GM+8=12
=>GM=4(cm)