K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

( n2 + 3n + 1 )( n + 2 ) - n3 + 2

= n3 + 2n2 + 3n2 + 6n + n + 2 - n3 + 2

= 5n2 + 7n + 4 ( chưa thể chứng minh được )

22 tháng 9 2020

tìm m,n,p 

-3x^k ( m^2 + n x + p ) = 3x^k+2+12x^k+3^k với mọi x

27 tháng 1 2019

\(3n-11⋮n-2\)

\(\Rightarrow3n-6-5⋮n-2\)

\(\Rightarrow3\left(n-2\right)-5⋮n-2\)

      \(3\left(n-2\right)⋮n-2\)

\(\Rightarrow5⋮n-2\)

\(\Rightarrow n-2\in U\left(5\right)\)

...

27 tháng 1 2019

\(3n-11⋮n-2\)

\(\Rightarrow3\left(n-2\right)-5⋮n-2\)

\(\Rightarrow5⋮n-2\)

\(\Rightarrow n-2\in\left\{5;1;-1;-5\right\}\)

\(\Rightarrow n\in\left\{7;3;1;-3\right\}\)

câu b chưa bt.để suy nghĩ thêm:))

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

2 tháng 2 2019

\(a)n+7⋮n+2\)

\(\Rightarrow n+2+5⋮n+2\)

Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)

Lập bảng :

n + 21-15-5
n-1-33-7

Vậy : ...

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm