K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{A}{2024}=\dfrac{2024^{30}+1}{2024^{30}+2024}=1-\dfrac{2023}{2024^{30}+2024}\)

\(\dfrac{B}{2024}=\dfrac{2024^{29}+1}{2024^{29}+2024}=1-\dfrac{2023}{2024^{29}+2024}\)

\(2024^{30}+2024>2024^{29}+2024\)

=>\(\dfrac{2023}{2024^{30}+2024}< \dfrac{2023}{2024^{29}+2024}\)

=>\(-\dfrac{2023}{2024^{30}+2024}>-\dfrac{2023}{2024^{29}+2024}\)

=>\(1-\dfrac{2023}{2024^{30}+2024}>1-\dfrac{2023}{2024^{29}+2024}\)

=>\(\dfrac{A}{2024}>\dfrac{B}{2024}\)

=>A>B

21 tháng 3

loading... 

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ

10 tháng 9 2023

\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)

Ta có :

\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)

\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)

\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)

\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)

\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)

10 tháng 9 2023

S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄

= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)

= 11014.C₂₀₂₄

= 11014.

16 tháng 8

jhvugb

TH
Thầy Hùng Olm
Manager VIP
2 tháng 5 2023

B = \(1-\dfrac{1}{2025}\)   \(A=1-\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)

Nên B>A

2 tháng 5 2023

Ta có :

\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)

\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)

Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)

Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)

⇒A lớn hơn B