các bạn ơi cho mình hỏi câu này:55n+1 -55n chia hết cho 54 {n là số tự nhiên}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
`55^(n+1)-55^n = 55^n . 55 - 55^n`
`= 55^n . (55-1) = 55^n . 54 vdots 54 forall n`
2n+5chia hết cho 2n+1
=>4n+10chia hết cho 4n+2
=>2n+5chia hết cho 2n+1
Ta có: 2n + 5 = (2n - 1) + 6
Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1
=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> 2n \(\in\){2; 3; 4; 7}
Do n \(\in\)N=> n \(\in\){1; 2}
Vì ( 2n + 5 ) chia hết cho ( n + 1 ) => [ 2n + 5 - 2 ( n + 1 )] chia hết cho ( n + 1 )
=> 3 chia hết cho n + 1
=> n + 1 là ước của 3
với n + 1 = 1 => n = 0
với n + 1 = 3 +> n = 2
Đáp số : n= 0, n = 2
2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2.(n + 1) + 3 chia hết cho n + 1
Do 2.(n + 1) chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\)=> \(n+1\ge1\)=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
\(5n+3⋮n-1\)
\(\Rightarrow5n-1+4⋮n-1\)
\(5\left(n-1\right)⋮n-1\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
VS n - 1 = 1 => n = 2
.... tương tự
số đoa chia hết cho 4 nhưng ko chia hết cho 9 bn à vì số dư là 12 chia hết cho 4 nhưng ko chia hết cho 9, 36 chia hết cho 9 và 4 nhưng số dư ko chia hết cho 9 thì số đó ko chia hét cho 9 mà chia hết cho 4 thui bn ak!!
nhớ tích mk nhá!!!!!!
Vì a chia 36 dư 12 nên a = 36 x k + 12
Do 36 x k chia hết cho 4, 12 chia hết cho 4 => a chia hết cho 4
Do 36 x k chia hết cho 9, 12 không chia hết cho 9 => a không chia hết cho 9
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
55n+1 -55n = 55n.55-55n = 55n (55-1)=55n . 54 \(⋮\)54
CÁM ƠN BẠN