K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

\(4-x^2+6x=-\text{[}x^2-2\cdot x\cdot3+3^2-15\text{]}\)

\(=-\left[x-3\right]^2+15\)

\(-\left[x-3\right]^2\le0\)

\(\Rightarrow-\left[x-3\right]^2+15\le15\)

=> \(GTLN-\left[x-3\right]^2+15=15\)khi x = 3

15 tháng 9 2017

4-x^2+6x=-(x^2-6x-4)

           =-(x^2-2x3+3^2)+13

           =-(x-3)^2+13

vì -(x-3)^2\(\le\)0

\(\rightarrow\)GTLN của biểu thức trên bằng 13 tại x=3

4 tháng 12 2014

Uầy! Mong sao là đúng cho anh em chép chung, chứ sai thì cả lũ... thôi rồi lượm ơi!!!

 

Đau lòng, đau lòng thằng đệ cÒng!

9 tháng 7 2016

\(MAX\)B=\(\frac{17}{2}\)

9 tháng 7 2016

B = -2(x2 -3x -2)= -2( x2 - 2.3x/2 + 9/4 -9/4 -2)

= -2(x-3/2)2 + 8,5

GTLN: B = 8,5

3 tháng 12 2017

M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12

Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1

Vậy GTLN của M = 12 <=> x  = -1

k mk nha

3 tháng 12 2017

\(M=-3x^2-6x+9\)

\(=\left(-3x^2-6x-3\right)+12\)

\(=12-3\left(x^2+2x+1\right)\)

\(=12-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow M\le12\)

Dấu = xảy ra khi \(\left(x+1\right)^2=0\)

                            \(\Rightarrow x+1=0\)

                             \(\Rightarrow x=-1\)

Vậy \(M_{Max}=12\Leftrightarrow x=-1\)

16 tháng 12 2015

GTNN là -2009 <=> x = 2; y = 3

C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ

16 tháng 12 2015

 

Vì  - / x-2/ </0

và - / y -3/ </ 0

=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009

Max C = -2009 khi  x -2 =0 => x =2 và y -3 =0 => y =3

 

9 tháng 3 2016

Bằng 2 bạn à. Cần cách giải bảo mình nhé

9 tháng 3 2016

Xin lỗi bạn mình nhầm. Giá trị đó bằng 1. bạn tính xem phải ko nhá