K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3

\(\left(x-2\right).\left(x-2\right)+2024=\left(x-2\right)^2+2024\ge2024\forall x\in R\\ Vậy:min_{BT}=2024\Leftrightarrow x-2=0\Leftrightarrow x=2\)

23 tháng 1 2017

Giải :(x2+2xy+y2)+y2-6x-8y+2024=(x+y)2-2(x+y)3+y2-2y+2024

=(x+y-3)2+(y2-2y+1)+2014=(x+y-3)2+(y-1)2+2014 >=2014

vì (x+y-3)2;(y-1)2>=0 với mọi x;y

nên Pmin=2014khi y=1;x=2

23 tháng 1 2017

MinP=2024 nha!

16 tháng 7 2023

\(C=16x^2-8x+2024\)

\(\Rightarrow C=16x^2-8x+1+2023\)

\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)

\(\Rightarrow Min\left(C\right)=2023\)

\(D=-25x^2+50x-2023\)

\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)

\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=1998\)

\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)

\(\Rightarrow Max\left(B\right)=200\)

\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)

\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)

\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)

\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)

\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)

\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)

\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)

\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)

\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)

\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(F\right)=48\)

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)

28 tháng 5 2017

x=0,32

tk ủng hộ nhé

28 tháng 5 2017

8 : ( 1/4 . x ) = 2 : 1/50

8 : ( 1/4 . x ) = 100

1/4 . x = 8 : 100

1/4 . x = 2/25

x = 2/25 : 1/4

x = 8/25 = 0,32

Vậy x = 0,32

Nhớ k cho mình nhé!