K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3

Bổ sung đề:

14/17 - 3/11 + 3/17 - 8/11

= (14/17 + 3/17) - (3/11 + 8/11)

= 1 - 1

= 0

19 tháng 3

\(\dfrac{14}{17}-\dfrac{3}{11}+\dfrac{3}{17}-\dfrac{8}{11}\\ =\left(\dfrac{14}{17}+\dfrac{3}{17}\right)-\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\\ =\dfrac{14+3}{17}-\dfrac{3+8}{11}\\ =\dfrac{17}{17}-\dfrac{11}{11}\\ =1-1=0\)

27 tháng 6 2018

\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)

\(=\)\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{10}{20}-\frac{1}{20}\)

\(=\frac{9}{20}\)

Tk giúp !!

a: =35/17-18/17-9/5+4/5

=1-1=0

b: =-7/19(3/17+8/11-1)

=7/19*18/187=126/3553

c: =26/15-11/15-17/3-6/13

=1-6/13-17/3

=7/13-17/3=-200/39

25 tháng 1 2016

A x 3 =  3/(8x11)+3/(11x14) +......+3/(605x608)

A x 3 =  1/8 – 1/11+ 1/11 – 1/14 +......+ 1/605 – 1/608

A x 3 =  1/8 – 1/608 = 76/608 - 1/608 = 75/608

A = 75/608 : 3 = 25/608

a: \(=3\cdot\dfrac{6+14-9}{42}\cdot\dfrac{14}{11}\)

\(=3\cdot\dfrac{11}{42}\cdot\dfrac{14}{11}=1\)

b: \(=\dfrac{19}{5}\cdot\dfrac{11}{10}+\dfrac{9}{5}\cdot\dfrac{7}{3}\)

\(=\dfrac{209}{50}+\dfrac{63}{15}=4.18+4.2=8,38\)

29 tháng 6 2015
= 1/2x5 + 1/5x8 + 1/8x11 + 1/11x14 + 1/14/17 = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 = 1/2 - 1/17 = 15/34. Vì 15/34 < 1/2 =>đpcm
31 tháng 5 2020

ai trả lời nhanh nhâts sẽ được

31 tháng 5 2020

sẽ đc j???

5 tháng 8 2020

Dấu này * là dấu nhân

Một năm rồi không có ai trả lời à 

b: \(27D=3^{14}+3^{17}+...+3^{2024}\)

\(\Leftrightarrow26D=3^{2024}-3^{11}\)

hay \(D=\dfrac{3^{2024}-3^{11}}{26}\)

c: \(25E=-5^4-5^6-...-5^{1002}\)

\(\Leftrightarrow24E=-5^{1002}+5^2\)

hay \(E=\dfrac{-5^{1002}+5^2}{24}\)

16 tháng 1 2022

sai nha

 

5 tháng 3 2020

a) Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}< \frac{1}{2}\)

Vậy A<\(\frac{1}{2}\).

b) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                  \(\frac{1}{3^2}< \frac{1}{2.3}\)

                  \(\frac{1}{4^2}< \frac{1}{3.4}\)

                    ...

                   \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

Vậy \(B< 1\).