\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+...+\(\dfrac{2}{x\left(x+2\right)}\)=\(\dfrac{2}{9}\)
Giúp mình với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3.7}\)+\(\dfrac{1}{7.4}\) +\(\dfrac{1}{4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{2.3.7}\)+\(\dfrac{2}{2.7.4}\) +\(\dfrac{2}{2.4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{6.7}\)+\(\dfrac{2}{7.8}\) +\(\dfrac{2}{8.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6.7}\) +\(\dfrac{1}{7.8}\) +\(\dfrac{1}{8.9}\) +...+\(\dfrac{1}{x\left(x+1\right)}\)) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) -\(\dfrac{1}{8}\) +\(\dfrac{1}{8}\) -\(\dfrac{1}{9}\) +...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) ) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{x+1}\) )=\(\dfrac{2}{9}\)
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{2}{9}\) : 2
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{6}\) -\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{18}\)
x+1=18
x = 18-1
x =17
Vậy x =17
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
\(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{2}{9}\)
<=> \(\dfrac{1}{6.7:2}+\dfrac{1}{7.8:2}+\dfrac{1}{8.9:2}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{2}{9}\)
<=> \(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
<=> \(2\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)
<=> \(2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
<=> \(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
<=> \(\dfrac{1}{x+1}=\dfrac{1}{18}\)
<=> x + 1 = 18
<=> x = 17
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x.\left(x+1\right):2}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{2}{9}.2=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{9}-\dfrac{1}{6}=\dfrac{5}{8}\)
\(\Leftrightarrow\left(1.8\right)=5\left(x+1\right)\)
\(\Leftrightarrow8=5x+5\)
\(\Leftrightarrow5x=8-3=5\)
\(\Leftrightarrow x=5:5\)
\(\Leftrightarrow x=1\)
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\cdot\left[\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{x\left(x+1\right)}\right]=\dfrac{2}{9}\\ \dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}:2\\ \dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{9}\\ \dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{4}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{18}\\ x+1=18\\ x=17\)
Vậy x = 17
Ta có:
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=\dfrac{1.2}{2.3.7}+\dfrac{1.2}{2.4.7}+\dfrac{1.2}{2.4.9}+...+\dfrac{1.2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
Vậy \(x=17\)
a, sai đề
b, \(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Rightarrow\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{9}\) ( nhân cả 2 vế với \(\dfrac{1}{2}\) )
\(\Rightarrow\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x = 17
Câu a thiếu đề rồi bạn ơi mik giải câu b đây:
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{x+2}\right)=\dfrac{2}{9}\)
\(\dfrac{1}{6}-\dfrac{1}{x+2}=\dfrac{2}{9}:2\)
\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x = 17
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.
Lời giải:
Sửa đề: $x(x+1)$ thay vì $x(x+2)$.
$\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x(x+1)}=\frac{2}{9}$
$\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+....+\frac{2}{x(x+1)}=\frac{2}{9}$
$2\left[\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x(x+1)}\right]=\frac{2}{9}$
$\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}$
$\Rightarrow x+1=18$
$\Rightarrow x=17$
11h kém 15ph=10h 45ph
10h 45ph-9h 25ph=1h20ph