chứng minh rằng: P=(1+1/2)+(1+1/2^2)+...+(1+1/2^200)<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
eh hôm nay mình vừa học dạng này xong; P<3 nhé
P = 3/2 * 2^2+1/2^2 *... * 2^200+1/2^200
Mà 2^2+1/2^2 < 2^2+1-2/2^2-2 = 2^2-1/2^2-2 = 2^2-1/2
2^3+1/2^3 < 2^3+1-2/2^3-2 = 2^3-1/2^3-2 = 2^3-1/2(2^2-1)
...
2^200+1/2^3 < 2^100+1-2/2^100-2 = 2^100-1/2^100-2 = 2^100-1/2(2^199-1)
=> P < 3/2 * 2^2-1/2 * 2^3/2(2^2-1)*...* 2^200-1/2(2^199-1)
=3/2 * 1/2 * 1/2 * 1/2 ...* 1/2 (199 thừa số 1/2) * (2^200-1)
=3/2 * 2^200-1/2^199
= 3 * 2^200-1/2^200
= 3* (1- 1/2^200) < 3*1 = 3
=> đpcm
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)( đpcm )
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
$P = (1 + \frac{1}{2}) + (1 + \frac{1}{2^2}) + ... + (1 + \frac{1}{2^{200}}) < 2 + 2 + ... + 2 = 200 \times 2 = 400$