K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)

\(=1-\frac{1}{1990}=\frac{1989}{1990}\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1989}{1990}< \frac{3}{4}\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}< \frac{3}{4}\)

14 tháng 10 2017

Ta có: 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2

       = 1/4 + 1/(3 * 3)+1/(4 * 4)+...+ 1/(1990 * 1990) 

       < 1/4 + 1/(2 * 3) + 1/(3 * 4) +...+1/(1989 * 1990)

       = 1/4 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/1989 - 1/1990

       = 3/4 - 1/1990 < 3/4.

Vậy 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2  < 3/4 (đpcm)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lần sau bạn lưu ý gõ đề bằng bộ gõ công thức toán $(\sum)$ để được hỗ trợ tốt hơn.

Lời giải:
Ta có:

$\frac{1}{3^2}< \frac{1}{2.3}$

$\frac{1}{4^2}< \frac{1}{3.4}$

...........

$\frac{1}{1990^2}< \frac{1}{1989.1990}$

Cộng tất cả theo vế:

$\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1989.1990}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1989}-\frac{1}{1990}$

$=\frac{1}{2}-\frac{1}{1990}< \frac{1}{2}$

$\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

31 tháng 12 2016

Vì \(\frac{1}{2^2}< \frac{3}{4}\)

\(\frac{1}{3^2}< \frac{3}{4}\)

...
\(\frac{1}{1990^2}< \frac{3}{4}\)
=> Tổng đó bé hơn \(\frac{3}{4}\)

31 tháng 12 2016

\(\frac{1}{2^2}< \frac{1}{2}\left(1-\frac{1}{3}\right)\)

\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)

\(VP< \frac{1}{2}\left(1-\frac{1}{1991}\right)=\frac{1990}{2.1991}=\frac{995}{1991}< \frac{3}{4}\)

27 tháng 12 2016

\(\frac{1}{2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)\)

\(\frac{1}{3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(\frac{1}{4^2}< \frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)

\(\frac{1}{5^2}< \frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)\)

....

\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)

công hết lại: ra điều cần chứng minh

cho @ ...thêm cái nữa

\(\frac{1}{n^2}< \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n-2}\right)\)