Cho tam giác ABC đều, điểm D bất kì thuộc cạnh BC, gọi E là điểm đối xứng với D qua AB, F là điểm đối xứng D qua AC, vẽ hình bình hành EDFG
a)EG cắt AB tại K. CMR: KDE là tam giác đều
b) CMR: KDFE là hình thang cân
c) CMR: AG//BC
Bài này khó quá ạ @@ mn giúp em với!
Cám ơn mn ạ!
a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.
Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)
Vậy KDE là tam giác đều.
b) Câu này phải ta KDFG mới là hình thang cân.
Ta có KDFG đã là hình thang.
Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)
và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều) và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)
Vậy nên \(\widehat{GFD}=\widehat{KDF}\)
Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)
c) Gọi I, J là giao điểm của DF và KG với AC.
Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.
Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)
Vậy AG // BC.
30o lấy đâu ra vậy
Chỉ mình với :))