1(2x-1/2)^2 = 15/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
a) \(\left(2x-1\right)+\frac{3}{15}=\frac{3}{2}\)
\(\Rightarrow2x-1=\frac{3}{2}-\frac{3}{15}=\frac{13}{10}\)
\(\Rightarrow2x=\frac{13}{10}+1=\frac{23}{10}\)
\(\Rightarrow x=\frac{23}{20}\)
b) \(x+\frac{46}{15}=1,5\)
\(\Rightarrow x+\frac{46}{15}=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}-\frac{46}{15}\)
\(\Rightarrow x=\frac{-47}{30}\)
c) \(\left(-2x+1\right)+\frac{3}{15}=\frac{5}{3}\)
\(\Rightarrow-2x+1=\frac{5}{3}-\frac{3}{15}=\frac{22}{15}\)
\(\Rightarrow-2x=\frac{7}{15}\Rightarrow x=\frac{-7}{30}\)
1/ Ta có : ( -16 ) + 23 + x = ( -16 )
<=> 23 + x = ( -16 ) + 16
<=> 23 + x = 0
<=> x = 0 -23
<=> x = -23
Vậy x = -23
2/ Ta có : 2.x - 35 = 15
<=> 2.x = 15 + 35
<=> 2.x = 50
<=> x = 50 : 2
<=> x = 25
Vậy x = 25
1/ -16 + 23 + x = -16
[(-16) +23] +x = -16
7 + x = -16
x= -16 - 7
x= -23
2/ 2x - 35 = 15
2x= 15 + 35
2x = 50
x= 50:2
x= 25
Chúc bạn làm bài tốt
`a) 2^x div 4=16`
`<=> 2^x=64`
`<=> 2^x=2^6`
`<=> x=6`
`b) |x+1|=-2`
do `|x+1|>=0 AA x in ZZ`
$\to x\in\varnothing$
`c) 2x+15=-27`
`<=> 2x=-42`
`<=> x=-21`
a)x =-1
b)x = 7 phần 30
c)x = 1
d)x = 5/18
nếu đúng thì hãy cho mình nha
Sửa đề: \(1-\left(2x-\dfrac{1}{2}\right)^2=\dfrac{15}{16}\)
=>\(\left(2x-\dfrac{1}{2}\right)^2=1-\dfrac{15}{16}=\dfrac{1}{16}\)
=>\(\left[{}\begin{matrix}2x-\dfrac{1}{2}=\dfrac{1}{4}\\2x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\\2x=-\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{8}\end{matrix}\right.\)