B(x)=3x²-x³+2x²+4x-5+2x³
a) Thu gọn đa thứcB(x)
b)xác định bậc,hệ số cao nhất của đa thứcB(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)
\(A=0+x^2+\left(-3x\right)+2\)
\(A=x^2-3x+2\)
Bậc của đa thức là: \(2\)
Hệ số cao nhất là: \(1\)
b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)
\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)
\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)
\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)
c) A(x) có nghiệm khi:
\(A\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: A(x)=3x^3+3x-1
B(x)=-2x^3+x^2+4x-3
b: A(x)+B(x)
=3x^3+3x-1-2x^3+x^2+4x-3
=x^3+x^2+7x-4
B(x)-A(x)
=-2x^3+x^2+4x-3-3x^3-3x+1
=-5x^3+x^2+x-2
c; M(x)=x^3+x^2+7x-4
M(-3)=-27+9-21-4=-31-21+9=-43
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
`@``dn10`
`a,`
`P(x)=-2x^5-3x^4+2x^5+2x-0,6`
`P(x)=(-2x^5+2x^5)-3x^4+2x-0,6`
`P(x)=-3x^4+2x-0,6`
`b,`
Thay `x=1` vào đa thức `B(x)`
`B(1)=-4*1^3+6*1-4=-4*1+6-4=-4+6-4=2-4=-2`
a: =-2x^5+2x^5+3x^4+2x-0,6
=3x^4+2x-0,6
b: B(1)=-4+6-4=-8+6=-2
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
a, A(x)+B(x)=\(\left(3x^2-4x+5\right)+\left(3x^2+2x-5\right)\)
A(x)+B(x)=\(3x^2-4x+5+3x^2+2x-5\)
A(x)+B(x)=\(6x^2-2x\)
b, đa thức A(x) bậc 3
đa thức B(x) bậc 3
c, A(x)-B(x)=\(\left(3x^2-4x+5\right)-\left(3x^2+2x-5\right)\)
A(x)-B(x)=\(3x^2-4x+5-3x^2-2x+5\)
A(x)-B(x)=-6x+10
\(\Rightarrow\) A(x)-B(x) bậc 1
Em muốn hỏi bài nào vậy? Quá nhiều bài thầy cô và các bạn không thể trả lời được hết em ạ
a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm
a: A(x)=3x^5+x^4-x^2+x
B(x)=3x^5-x^4+x^2+x-2
b: M(x)=B(x)-A(x)
=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x
=-2x^4+2x^2+2x-2
a) B(x) = 3x² - x³ + 2x² + 4x - 5 + 2x³
= (3x² + 2x²) + (-x³ + 2x³) + 4x - 5
= 5x² + x³ + 4x - 5
=> Vậy, đa thức B(x) sau khi thu gọn là B(x) = x³ + 5x² + 4x - 5.
b) Bậc của đa thức B(x) là 3 và hệ số cao nhất của đa thức B(x) là 1.
Lời giải:
a. $B(x)=(-x^3+2x^3)+(3x^2+2x^2)+4x-5$
$=x^3+5x^2+4x-5$
b.
Bậc của đa thức: $3$
Hệ số cao nhất: $1$ (chính là hệ số gắn với $x^3$)