K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

--> Tử số là $2n + 1$ và mẫu số là $3n + 2$. 
--> Nếu tử số và mẫu số có ước chung, thì ước chung đó phải là một số tự nhiên lớn hơn 1 và là ước của cả $2n + 1$ và $3n + 2$. 
--> Tuy nhiên, nếu lấy $2n + 1$ trừ đi $3n + 2$, ta được $-n - 1$, tức là một số không phải là ước của $2n + 1$ hoặc $3n + 2$. 
--> Vì vậy, có thể kết luận rằng $2n + 1$ và $3n + 2$ không có ước chung nào ngoại trừ 1. 
=> Do đó, phân số $\frac{2n + 1}{3n + 2}$ đã được tối giản.

17 tháng 3

Đặt ƯCLN (2n+1;3n+2) = d ( dϵ N * )

Ta có :⇒ (2n+1) ⋮ d ⇒ 3(2n+1)⋮ d ⇒ (6n+3)⋮d 

             (3n+2) ⋮ d ⇒ 2(3n+2)⋮ d ⇒ (6n+4)⋮ d 

⇒ [(6n+4)-(6n+3)] ⋮ d 

⇒ [6n+4-6n-3]

⇒ 1⋮d

⇒ d =1 

⇒  ƯCLN (2n+1;3n+2) = 1 

Vậy PS 2n+1 /3n+2 là phân số tối giản 

Chúc bạn học tốt ♫

⇒ 1 ⋮ d 

31 tháng 7 2021

Gọi a là ƯCLN(2n+1;3n+2)

Ta có 2n+1 chia hết cho a nên 3(2n+1) cũng chia hết cho a hay 6n+3 cũng chia hết cho a

Ta có 3n+2 chia hết cho a nên 2(3n+2) cũng chia hết cho a hay 6n+4 cũng chia hết cho a

Ta suy ra [(6n+4)-(6n+3)] chia hết cho a

                  (6n+4-6n-3) chia hết cho a

                   1 chia hết cho a

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

hay \(\dfrac{2n+1}{3n+2}\) là phân số tối giản

11 tháng 4 2023

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

vậy ...

11 tháng 4 2023

Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)

Nên 2n+1⁝ d và 3n+2 ⁝ d

⇒ 3(2n+1) ⁝ d và 2(3n+2)

⇒ 6n+3 ⁝ d và 6n+4 ⁝ d

⇒ ( 6n+4 - 6n+3) ⁝ d

⇒ 1⁝ d

⇒ d= 1

Vậy:..

Chúc bạn học tốt

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

6 tháng 1 2022

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

6 tháng 1 2022

cảm ơn bạn

 

1 tháng 4 2016

GỌI Đ LÀ ƯC (2N+1/3N+2)

=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ

=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD

=>(6N+3)-(6N+4) CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ

=>Đ=1

=>2N+1/3N+2 LÀ P/S TỐI GIẢN

1 tháng 4 2016

thiếu đề bài nha

sao mình giải được

30 tháng 4 2019

https://h.vn/hoi-dap/question/39186.html

30 tháng 4 2019

Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )

=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d  

=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d

=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d 

=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d 

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1 

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

8 tháng 5 2019

Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.

a) Gọi d là ước chung của n + 7n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.

b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn