phân tich đa thức thành nhân tử a2(a+1)-b2(b-1)+ab-3ab(a-b+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(a^2-b^2-2x\left(a-b\right)=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)=\left(a-b\right)\left(a+b-2x\right)\)
\(a^2-b^2-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2x\right)\)
a, 4\(x^3\).y + \(\dfrac{1}{2}\)yz
=y.(4\(x^3\) + \(\dfrac{1}{2}\)z)
b, (a2 + b2 - 5)2 - 2.(ab + 2)2
= [a2 + b2 - 5 - \(\sqrt{2}\)(ab + 2) ].[ a2 + b2 - 5 + \(\sqrt{2}\)(ab +2)]
a) \(4x^3y+\dfrac{1}{2}yz=y\left(4x^3+\dfrac{1}{2}z\right)\)
b) \(\left(a^2+b^2-5\right)^2-2.\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[a^2+b^2+2ab-1\right]\left[a^2+b^2-2ab-9\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left[\left(a+b+1\right)\left(a+b-1\right)\right]\left[\left(a-b+3\right)\left(a-b-3\right)\right]\)
a3 ( c - b2 ) + b3 ( a - c2 ) + c3 ( b - a2 ) + abc ( abc - 1 )
= a3c - a3b2 + b3a - b3c2 + c3b - c3a2 + a2b2c2 - abc
= a2b2c2 - b3c2 - ( a2c3 - bc3 ) - ( a3b2 - ab3 ) + ( a3c - abc )
= b2c2 . ( a2 - b ) - c3 ( a2 - b ) - ab2 ( a2 - b ) + ac ( a2 - b )
= ( a2 - b ) ( b2c2 - c3 - ab2 + ac )
= ( a2 - b ) ( b2 - c ) ( c2 - a )
phân tích bằng đặt ẩn phụ=))
Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)
Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:
\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)
Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).