tìm giá trị nguyên của n để 5/3n+1 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
Để `3n+4/n-1∈ZZ`
3n+4⋮n−13n+4⋮n-1
⇒(3n−3)+7⋮n−1⇒(3n-3)+7⋮n-1
⇒3(n−1)+7⋮n−1⇒3(n-1)+7⋮n-1
Vì 3(n−1)⋮n−13(n-1)⋮n-1
⇒7⋮n−1⇒7⋮n-1
⇒n−1∈Ư(7)={±1;±7}⇒n-1∈Ư(7)={±1;±7}
⇒n∈{0;2;−6;8}⇒n∈{0;2;-6;8}
Vậy 3n+4n−1∈Z3n+4n-1∈ℤ khi n∈{0;2;−6;8}
Giải:
Để \(A=\dfrac{3n+4}{n-1}\) là số nguyên thì \(3n+4⋮n-1\)
\(3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Vậy \(n\in\left\{-6;0;2;8\right\}\)
Chúc bạn học tốt!
Để \(\frac{3n-5}{n+4}\)có giá trị nguyên thì:
\(3n-5⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
\(\Rightarrow-17⋮n+4\)
Vì \(n\in Z\Rightarrow n+4\inƯ\left(-17\right)=\left\{\mp1;\mp17\right\}\)
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy \(n\in\left\{-3;-5;13;-21\right\}\)
Để M là số nguyên thì \(3n-1⋮n-1\)
=>\(3n-3+2⋮n-1\)
=>\(2⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
\(D=\frac{3n+5}{2n+3}\)
=> \(2D=\frac{6n+10}{2n+3}=\frac{6n+9+1}{2n+3}=\frac{3\left(2n+3\right)+1}{2n+3}\)
=> \(2D=3+\frac{1}{2n+3}\)
=> Để D là số nguyên thì 1 phải chia hết cho 2n+3 và \(\frac{1}{2n+3}\)phải là số lẻ
=> 2n+3 = {-1; 1}
+/ 2n+3=-1 => n=-2 => D=1
+/ 2n+3=1 => n=-1 => D=2
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
-Để A có giá trị nguyên
=> 3n+2 chia hết cho n-1
Mà 3n+2 chia hết cho n-1
n-1 chia hết cho n-1 => 3(n-1) chia hết cho n-1
=> 3n-3 chia hết cho n-1
<=> (3n+2)-(3n-3) chia hết cho n-1
<=> 3n+2-3n+3 chia hết cho n-1
<=> 5 chia hết cho n-1
<=> n-1 thuộc Ư(5)={1;-1;5;-5}
<=> n = {2;0;6;-4}
Vậy n = {2;0;6;-4} thì A có giá trị nguyên.
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Để \(\dfrac{5}{3n+1}\) là số nguyên thì \(5⋮3n+1\)
=>\(3n+1\in\left\{1;-1;5;-5\right\}\)
=>\(3n\in\left\{0;-2;4;-6\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{4}{3};-2\right\}\)
mà n nguyên
nên \(n\in\left\{0;-2\right\}\)
Vì tử số là 5, nên mẫu số phải là 1 hoặc 5 (vì 5 chỉ có 2 ước là 1 và 5).
Vậy ta có hai trường hợp:
1) Nếu $3n+1 = 1$ thì $n = 0$.
2) Nếu $3n+1 = 5$ thì $n = \frac{4}{3}$.
Vì $n$ phải là số nguyên, nên giá trị duy nhất của $n$ là $n = 0$.