\(\sqrt{x+\frac{1}{x^2}}+\sqrt{x-\frac{1}{x^2}}=\frac{2}{x}\)
giúp mk vs!tks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}+2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-1}{\sqrt{x}+1}\)
a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)
\(=x-2\sqrt{x}+4\)
=.= hok tốt!!
ĐK x >0
\(PT\Leftrightarrow2x+2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}.\)
\(\Leftrightarrow2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}-2x\)
\(\Leftrightarrow x^2-\frac{1}{x^4}=\frac{4}{x^4}-\frac{4}{x}+x^2\)(chia cả 2 vế cho 2)
\(\Leftrightarrow\frac{5}{x^4}-\frac{4}{x}=0\Leftrightarrow5-4x^3=0\Leftrightarrow4x^3=5\)
\(\Leftrightarrow x^3=\frac{5}{4}\Leftrightarrow x=\sqrt[3]{\frac{5}{4}}\)
Vậy................................
Bài này trước giải bằng lượng giác chắc bạn Nguyệt Hà chưa hiểu, giờ mình giải bằng Đại số nhé!
Phương trình tương đương với
\(x-\sqrt{1-x^2}=\sqrt{2}x.\sqrt{1-x}\)
Đặt \(t=x-\sqrt{1-x^2}\) thì \(x\sqrt{1-x^2}=\dfrac{1-t^2}{2}\). Phương trình trở thành \(t=\sqrt{2}.\dfrac{1-t^2}{2}\).
Tìm được t sẽ suy ra x nhé!
Đặt \(\hept{\begin{cases}\sqrt{x+\frac{1}{x^2}}=a\ge0\\\sqrt{x-\frac{1}{x^2}}=b\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{x}=\sqrt{\frac{a^2-b^2}{2}}\) từ đây ta có
\(\Rightarrow a+b=\sqrt{2\left(a^2-b^2\right)}\)
\(\Leftrightarrow\sqrt{a+b}=\sqrt{2\left(a-b\right)}\)
\(\Leftrightarrow a+b=2\left(a-b\right)\)
\(\Leftrightarrow a=2b\)
\(\Rightarrow\sqrt{x+\frac{1}{x^2}}=2\sqrt{x-\frac{1}{x^2}}\)
\(\Leftrightarrow x+\frac{1}{x^2}=4\left(x-\frac{1}{x^2}\right)\)
\(\Leftrightarrow3x^3=5\)
\(\Leftrightarrow x=\sqrt[3]{\frac{5}{3}}\)
Giải nhầm rồi. Giải lại nhé.
\(\sqrt{x+\frac{1}{x^2}}+\sqrt{x-\frac{1}{x^2}}=\frac{2}{x}\)
\(\Leftrightarrow\sqrt{\frac{x^3+1}{x^2}}+\sqrt{\frac{x^3-1}{x^2}}=\frac{2}{x}\)
\(\Leftrightarrow\sqrt{x^3+1}+\sqrt{x^3-1}=2\)
Đặt \(\hept{\begin{cases}\sqrt{x^3+1}=a\ge0\\\sqrt{x^3-1}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=2\\a^2-b^2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)
\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\)