Cho a,b là các số nguyên dương thỏa mãn \(\sqrt{11}-\dfrac{a}{b}>0\) .Chứng minh rằng \(11b^2-a^2\ge2\) và \(\sqrt{11}b-\dfrac{a}{b}>\dfrac{1}{2ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{4b^2+bc+4c^2}}+\dfrac{b}{\sqrt{4c^2+ca+4a^2}}+\dfrac{c}{\sqrt{4a^2+ab+4b^2}}\ge1\)
Ta có:
\(\sum\left(\dfrac{a}{\sqrt{4b^2+bc+4c^2}}\right)^2\sum a\left(4b^2+bc+4c^2\right)\ge\left(a+b+c\right)^3\)
Nên ta chỉ cần chứng minh:
\(\dfrac{\left(a+b+c\right)^3}{a\left(4b^2+bc+4c^2\right)+b\left(4c^2+ac+4a^2\right)+c\left(4a^2+ab+4b^2\right)}\ge1\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3}{4a\left(b^2+c^2\right)+4b\left(c^2+a^2\right)+4c\left(a^2+b^2\right)+3abc}\ge1\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đúng theo Schur bậc 3)
Với mọi \(0< a< \dfrac{1}{2}\) ta có:
\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)
\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)
Do đó:
\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)
Tương tự:
\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)
Cộng vế:
\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)
Tương tự và cộng lại:
\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)
\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)
Ta có:
\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)
Tương tự và cộng lại:
\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)
\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)
Dấu "=" xảy ra khi \(a=b=c=1\)