Tính
B = ( 1 - 1/22)( 1 - 1/32 )( 1 - 1/42 ) .....( 1 - 1/2012 )
Mọi người giải giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
\(\frac{21}{11}\times\frac{22}{17}:\frac{42}{34}\)
\(=\frac{44}{17}:\frac{42}{34}\)
\(=\frac{44}{21}\)
Hok tốt
\(\frac{21}{11}.\frac{22}{17}\div\frac{42}{34}\)
\(=\frac{21}{11}.\frac{22}{17}.\frac{34}{42}\)
\(=\frac{21.22.34}{11.17.42}\)
\(=\frac{21.11.2.17.2}{11.17.2.21}\)
\(=2\)
A=1/2^2+1/3^2+...+1/10^2
=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1
Trả lời:
1/3+1/2+1/5+12/15+22/33+16/32=
(1/3+22/33)+(1/5+12/15)+(1/2+16/32)
=1+1+1=3
a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=\frac{2016}{2017}\)
\(\Rightarrow\) \(S=\frac{1008}{2017}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
B = (1 - \(\dfrac{1}{2^2}\)).(1 - \(\dfrac{1}{3^2}\)).(1 - \(\dfrac{1}{4^2}\))...(1 - \(\dfrac{1}{201^2}\))
B = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{201^2-1}{201^2}\)
B = \(\dfrac{4-1}{2^2}\).\(\dfrac{9-1}{3^2}\).\(\dfrac{16-1}{4^2}\)...\(\dfrac{40401-1}{201^2}\)
B = \(\dfrac{3}{2^2}\).\(\dfrac{8}{3^2}\).\(\dfrac{15}{4^2}\)....\(\dfrac{40400}{201^2}\)
B = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\).\(\dfrac{4.6}{5.5}\)...\(\dfrac{200.202}{201.201}\)
B = \(\dfrac{1}{2}\).\(\dfrac{202}{201}\)
B = \(\dfrac{101}{201}\)