K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 1) Tìm các số nguyên x sao cho phân số \(\dfrac{2x+16}{2x-1}\)có giá trị nguyên. 2) Tính giá trị: \(A=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{2021.2023}\right)\) 3) Tìm số tự nhiên \(\overline{20ab}\), biết khi chia \(\overline{20ab}\) cho 23 thì dư 22, chia cho 19 thì dư 9. Bài 2: 1) Cho tổng: \(A=1+3^2+3^4+3^6+...+3^{100}\) a, Chứng minh rằng A chia hết cho 91. b, Chứng minh rằng 8A + 1 là...
Đọc tiếp

Bài 1:
1) Tìm các số nguyên x sao cho phân số \(\dfrac{2x+16}{2x-1}\)có giá trị nguyên.
2) Tính giá trị: \(A=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{2021.2023}\right)\)
3) Tìm số tự nhiên \(\overline{20ab}\), biết khi chia \(\overline{20ab}\) cho 23 thì dư 22, chia cho 19 thì dư 9.
Bài 2:
1) Cho tổng: \(A=1+3^2+3^4+3^6+...+3^{100}\)
a, Chứng minh rằng A chia hết cho 91.
b, Chứng minh rằng 8A + 1 là số chính phương.
2) Tìm các số nguyên tố x,y thỏa mãn \(4x^2=6^y+64\)
Bài 3:
1) Lớp 6A, 6B, 6C thi trồng cây, lớp 6A trồng được 1/2 số cây 2 lớp còn lại. Lớp 6B trồng được 2/3 số cây 2 lớp còn lại. Lớp 6C trồng được 4/11 số cây 2 lớp còn lại.Biết rằng lớp 6B hơn lớp 6A 3 cây. Tìm số cây lớp 6C trồng.
2) Cho a,b là hai số nguyên thỏa mãn \(\left(a-b\right).\left(2a+2b+1\right)=b^2\) Chứng minh phân số \(\dfrac{a-b}{2a+2b+1}\) tối giản.
Bài 4:
1) Cho một đoạn thẳng AB = 12cm, lấy điểm M thuộc đoạn thẳng AB sao cho AM = 4cm. Vẽ điểm D,E lần lượt là trung điểm của các đoạn thẳng AM và MB. Gọi K à trung điểm của đoạn thẳng DE. Tính độ dài đoạn thẳng MK.
2) Cho n điểm phân biệt và trong đó có 5 điểm thẳng hàng. Cứ qua hai điểm hẻ được 1 đường thẳng. Biết qua các điểm trên kẻ được 181 đường thẳng phân biệt. Tìm n.
Bài 5:
 - Một doanh nghiệp hợp đồng vay vốn kinh doanh với ngân hàng. Doanh nghiệp lên kế hoạc trả gốc hàng tháng như sau: Tháng thứ nhất trả 1/2 số tiền đã vay, các tháng sau lần lượt trả số tiền bằng bằng 1/2 số tiền trả tháng trước. Cứ như vậy sau 1 năm doanh nghiệp thấy còn phải trả thêm khoản tiền gốc là 256 triệu đồng. Hỏi doanh nghiệp đã vay ngân hàng khoản tiền là bao nhiêu?

 

5
14 tháng 3

Ối dồi ôi

@_@

14 tháng 3

SOS

1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)

\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)

\(=x+1\)

ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)

2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)

mà \(x^2+x+1⋮x^2+x+1\)

nên \(-1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)

\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0

Đề sai rồi bạn

a: \(A=\dfrac{x^2+1+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^2+2}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}=\dfrac{x^2+2}{x-1}\)

b: A nguyên

=>x^2-1+3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)

1 tháng 5 2022

ĐKXĐ: \(x\ne\pm1;x\ne0\)

a)\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\dfrac{5\left(x-1\right)}{2x}-\dfrac{x^2-1}{x^2+2x+1}\)

\(=\dfrac{10}{x+1}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)

\(=\dfrac{10}{x+1}-\dfrac{x-1}{x+1}\)

\(=\dfrac{11-x}{x+1}\)

b) \(A=\dfrac{11-x}{x+1}=2\)

\(\Leftrightarrow11-x=2\left(x+1\right)\)

\(\Leftrightarrow11-x=2x+2\)

\(\Leftrightarrow-x-2x=2-11\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\left(nhận\right)\)

c) -Để \(A=\dfrac{11-x}{x+1}\in Z\) thì:

\(\left(11-x\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(12-x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow12⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1\right)\inƯ\left(12\right)\)

\(\Rightarrow\left(x+1\right)\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)

\(\Rightarrow x\in\left\{2;3;5;11;-2;-3;-4;-5;-7;-13\right\}\)

 

 

 

1 tháng 5 2022

em cảm ưn gất nhìuuuuu:33

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: \(\left\{\begin{matrix} x+1\neq 0\\ x-1\neq 0\\ 2-2x^2\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 1\)

b) 

\(A=\left[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x+1}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}\right].\frac{1}{x+1}=\frac{x^2+2x+1}{(x-1)(x+1)}.\frac{1}{x+1}\)

\(=\frac{(x+1)^2}{(x-1)(x+1)}.\frac{1}{x+1}=\frac{1}{x-1}\)

Để $A$ nguyên thì $1\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1\right\}$

$\Rightarrow x\in\left\{0;2\right\}$ (đều thỏa mãn đkxđ)

 

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)

\(=\left(\dfrac{2x\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{4x}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x^2+2x+1\right)}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x+1\right)^2}{2\left(x+1\right)^2\cdot\left(x-1\right)}\)

\(=\dfrac{1}{x-1}\)

b) Để A nguyên thì \(1⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(1\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)

hay \(x\in\left\{2;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;0\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;0\right\}\)

28 tháng 12 2021

Bài 1:

\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{16}{3}\\ d,P\in Z\Leftrightarrow x+5\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{-6;-4\right\}\)

Bài 2:

\(a,\Leftrightarrow\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}=0\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=0\Leftrightarrow\dfrac{-x}{x+2}=0\Leftrightarrow x=0\)