K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

\(\left\{{}\begin{matrix}m\left(x+3\right)\le x+5\\m\left(x+2\right)\ge x+3\end{matrix}\right.\) có nghiệm chung \(\left(1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{x+5}{x+3}\\m\ge\dfrac{x+3}{x+2}\end{matrix}\right.\)

Để 2 pt có 1 nghệm chung thì \(\dfrac{x+5}{x+3}=\dfrac{x+3}{x+2}\)

\(\Leftrightarrow\left(x+5\right)\left(x+2\right)-\left(x+3\right)^2=0\)

\(\Leftrightarrow x^2+7x+10-x^2-6x-9=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Thay \(x=-1\) vào \(\left(1\right):\)

\(\left\{{}\begin{matrix}m\left(-1+3\right)\le-1+5\\m\left(-1+2\right)\ge-1+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m\le4\\m\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le2\\m\ge2\end{matrix}\right.\)

\(\Rightarrow m=2\)

Vậy m = 2 thì bpt trên có nghiệm chung

12 tháng 3 2023

Mình cảm ơn nhiều ạ

 

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

5 tháng 7 2021

\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)

Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)

Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)

Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)

\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)

18 tháng 2 2021

ĐK: \(-5\le x\le3\)

\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\)

\(\Leftrightarrow a\ge-x^2-2x+15+\sqrt{-x^2-2x+15}-15\left(1\right)\)

Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)

\(\left(1\right)\Leftrightarrow a\ge f\left(t\right)=t^2+t-15\)

Yêu cầu bài toán thỏa mãn khi

\(a\ge maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right)\right\}=f\left(4\right)=5\)

Vậy \(a\ge5\)

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !