K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x=2 không phải là nghiệm nên ta chia cả hai vế của phương trình cho (x-2)2

\(5\sqrt[n]{\left(\frac{x+2}{x-2}\right)^2}-4\sqrt[n]{\frac{x+2}{x-2}}-1=0\)(1)

Đặt\(\sqrt[n]{\frac{x+2}{x-2}}=y\)thì (1)trở thành

\(5y^2-4y-1=0\)

\(\Leftrightarrow\left(y-1\right)\left(5y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y_1=1\\y_2=-\frac{1}{5}\end{cases}}\)

Xét \(y=1\Leftrightarrow\sqrt[n]{\frac{x+2}{x-2}}=1\)phương trình vô nghiệm 

Xét \(y=-\frac{1}{5}\Leftrightarrow\sqrt[n]{\frac{x+2}{x-2}}=-\frac{1}{5}\)(2)

Nếu n chẵn thì (2) vô nghiệm 

Nếu n lẻ thì (2)\(\Leftrightarrow\frac{x+2}{x-2}=-\frac{1}{5^n}\Leftrightarrow x=\frac{2\left(1-5^n\right)}{1+5^n}\)

Tóm lại : Nếu n chẵn thì phương trình đã cho vô nghiệm

             Nếu n lẻ thì phương trình có nghiệm \(x=\frac{2\left(1-5^n\right)}{1+5^n}\)

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi