K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hoàng vũ

Bài 1 :

Không . Vì số không cũng là một phần tử của tập hợp A .

10 tháng 9 2017

Bài 1 : Không vì A có 1 phần tử là 0

Bài 2 : Các tập hợp con của N là:  a c N

                                                   1 c N 

                                                   2 c N

17 tháng 5 2017

không thể nói A = vì A là tập hợp có một phần tử, còn ∅ là tập hợp không có một phần tử nào

5 tháng 6 2018

Không thể nói A = ∅ vì A là tập hợp có 1 phần tử, còn ∅ là tập hợp không có 1 phần tử nào.

( Chúc Bạn Học Tốt)

24 tháng 4 2016

Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)

\(C_{18}^k\left(k=1,.....,18\right)\)

Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :

\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)

\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)

\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)

\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)

\(\Leftrightarrow17>2k\)

\(\Leftrightarrow k< \frac{17}{2}\)

Điều kiện (*) nên k = 1,2,3,.....8

Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17

Vậy ta có 

\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)

Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.

9 tháng 7 2017

1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3

15 tháng 4 2017

Tập hợp A có một phần tử, đó là số 0. Vậy A không phải là tập hợp rỗng.

Bài giải:
Tập hợp A có một phần tử, đó là số 0. Vậy A không phải là tập hợp rỗng.

11 tháng 7 2017

Không thể nói \(A=\phi\)vì \(A\)có 1 phần tử \(\left(0\right)\), còn \(A=\phi\)thì \(A\)phải không có phần tử nào.

9 tháng 7 2017

ko (vì t/h A có 1 phần tử là 0)

3 tháng 6 2018

\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)

3 tháng 6 2018

Các tập hợp con của A là:

{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}

17 tháng 7 2018

a) \(A=\left\{\varnothing\right\}\)

A không có phần tử nào

b) Số phần tử của B thuộc dãy: 2;4;6;8;....98;100

Vậy B có số phần tử là: (100-2):2+1 = 50 (phần tử)

c) Ta có: x + 1 = 0 => x = -1 

Mà x phải thuộc N nên không thỏa mãn

Vậy C không có phần tử nào

d) Tập hợp D có vô số phần tử

Bắt đầu từ 0 và mỗi số liên tiếp hơn kém nhau 3 đơn vị

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)