GIÚP MÌNH :
Tính
\(\left(-1\right)^{2n}\) với \(n\in N\)
Mk ko hiểu lắm
giúp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm TXĐ
tìm giá trị nhỏ nhất của mẫu là 1 với mọi n
từ đó suy ra điều phải cm
Với \(3^{2n}\): Do 3>0 => \(3^{2n}\)>0
Với \(-3^{2n+1}\): Do -3<0 mà 2n+1 là số lẻ =>\(-3^{2n+1}\)<0
Từ đó, \(-3^{2n+1}\)<0<\(3^{2n}\)hay \(-3^{2n+1}\)<\(3^{2n}\)
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.
Xét trường hợp n chẵn:
\(1^2+2^2+3^2+...+n^2=\left(1^2+3^2+5^2+...+\left(n-1\right)^2\right)+\left(2^2+4^2+6^2+...+n^2\right)\)
\(=\frac{\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right).\left(n+2\right)}{6}\)
\(=\frac{n\left(n+1\right).\left(n-1+n+2\right)}{6}\)
\(=\frac{n\left(n+1\right).\left(2n+1\right)}{6}\)
Tương tự với trường hợp n lẻ . ta có \(\text{ĐPCM}\)
\(A=1^2+2^2+3^2+....+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+n\left[\left(n+1\right)-1\right]\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left[1.2+2.3+3.4+....+n\left(n+1\right)\right]-\left(1+2+3+....+n\right)\)
Ta có :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(cái này tự CM nha)
\(1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(đpcm)
# Mik làm ý A trước nhé, mik sợ dài :
- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )
- Giả sử đẳng thức cũng đúng với\(n=k\)hay :
\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :
\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)
Thật vậy, ta có:
\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)
\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )
# giờ mik làm ý B nha !
- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )
Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :
1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)
Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :
13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)
Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)
\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )
\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng
Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)
\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
Với số nguyên âm với số mũ chẵn ( số mũ là 2n ) thì số đó là số nguyên dương .
Vậy ( -1)^2n = 1 ( vì -1 * -1 = 1 )
1
vi luy thua bac chan