K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3

Đây là dạng toán nâng cao giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi hsg. Hôm nay olm sẽ hướng dẫn em làm chi tiết dạng này bằng phương pháp chặn kết hợp với lập bảng ta có:

                Giải:

         (\(x-2018\))2 ≥ 0 ∀ \(x\) ⇒ 16 - y2 ≥ 0  (1)

         y2 ≥ 0 ∀ y ⇒ - y ≤ 0 ∀ - y2 + 16 ≤ 16 ∀ y (2)

Kết hợp (1) và (2) ta có: 0 ≤ 16 - y2 ≤ 16

   Mặt khác ta cũng có: 

     16 - y2 = 5.(\(x-2018\))2

    ⇒ 16 - y2 ⋮ 5  ⇒ 16 - y2 \(\in\) {0; 5; 10; 15; 20;...;}

Vì 0 ≤ 16 - y2 ≤ 16 nên 16 - y2 \(\in\) {0; 5; 10; 15}

               Lập bảng ta có: 

16 - y2   0 5 10 15
y2 16 11 loại 6 (loại) 1
\(\in\) N

-4; (loại)

4 (nhận)

   

- 1( loại)

1 (nhận)

   Theo bảng trên ta có: y \(\in\) {1; 4}

lập bảng ta có:

y 1 4
16 - y2 15 0
(\(x-2018\))2 = \(\dfrac{16-y^2}{5}\) 3 (loại) 0
\(x\) (\(x\in\) N)   2018 (nhận)

Theo bảng trên ta có cặp số tự nhiên \(x;y\) thỏa mãn đề bài là: 

(\(x;y\)) = (2018; 4) 

Kết luận: \(\left\{{}\begin{matrix}x=2018\\y=4\end{matrix}\right.\) là nghiệm của phương trình. 

 

 

 

 

    

 

 

 

  

 

7 tháng 1

hết cứu

 

3 tháng 12 2017

25 tháng 1 2022

Vì \(\left(x-5\right)^{2018}\ge0;\left|2y^2-162\right|^{2018}\ge0\Rightarrow\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}\ge0\)

mà \(\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}=0\)

Dấu ''='' xảy ra khi x = 5 ; \(2y^2=162\Leftrightarrow y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)

25 tháng 1 2022

Vì \(\left(x-5\right)^{2018}\ge0\\ \left|2y^2-162\right|^{2018}\ge0\\ \)

Suy ra phương trình dc thỏa mãn khi và chỉ khi x-5 = 0 và 2y^2-162=0

\(\left\{{}\begin{matrix}\left(x-5\right)^{2018}=0\\\left|2y^2-162\right|^{2018}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\2\left(y^2-81\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\pm9\end{matrix}\right.\)

 

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

12 tháng 7 2018

mọi người giúp e nha 

em k giúp cho  nha mn

thanks

12 tháng 7 2018

nghỉ hè rồi cn ôn lm j nx....

5 tháng 8 2017

(x-5)^2018>=0

y+1)^2018>=0

=>(x-5)^2018+(y+1)^2018>=0

dấu = xảy ra <=>x=5;y=-1