Tìm tất cả các cặp số nguyên x y , thỏa mãn x^2 + y^2 + 2x = 17 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+3xy-17=7x-2y\)
\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)
\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)
\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)
\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)
\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)
Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)
Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))
\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)
Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)
Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)
\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).
Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-
\(x^2-3xy+2=y\)
\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)
\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)
Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)
\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)
Lập bảng:
3x+1 | 19 | 1 | -19 | -1 |
x | 6 | 0 | \(\dfrac{-20}{3}\left(l\right)\) | \(\dfrac{-2}{3}\left(l\right)\) |
Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)
Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)
Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)
\(x.\left(y-1\right)+y=2\)
\(x.\left(y-1\right)+\left(y-1\right)=2-1\)
\(\left(y-1\right)\left(x-1\right)=1\)
(y-1) ; (x-1) có 2 cặp: \(y-1=1;x-1=1\) hoặc \(y-1=-1;x-1=-1\)
\(x;y\) có 2 cặp: \(y=2;x=2\) hoặc \(y=0;x=0\)
\(x\cdot\left(y-1\right)+y=2\\ xy-x+y=2\\ y\cdot\left(x+1\right)-x-1=2-1\\ y\cdot\left(x+1\right)-\left(x+1\right)=1\\ \left(x+1\right)\left(y-1\right)=1\)
mà `x;y in ZZ => x+1;y-1 in ZZ`
nên `x+1;y-1` thuộc ước nguyên của `1`
`=>x+1;y-1 in {1;-1}`
`=>x in {0;-2}; y in {2;0}`
Ta có : \(2^{x+1}.3^y=12^x\)
\(\Leftrightarrow3^y=\dfrac{12^x}{2^{x+1}}=\dfrac{3^x.4^x}{2^{x+1}}=\dfrac{3^x.2^{2x}}{2^{x+1}}=3^x.2^{2x}:2^{x+1}=3^x.2^{x-1}\)
\(\Leftrightarrow\dfrac{3^y}{3^x}=2^{x-1}\)
\(\Leftrightarrow3^{y-x}=2^{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=0\\x-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)(tm)
Vậy (x;y) = (1;1) nghiệm của phương trình trên
Olm chào em, đây là dạng toán nâng cao giải phương trình nghiệm nguyên. cấu trúc thi chuyên. Hôm nay olm.vn sẽ hướng dẫn em giải dạng này bằng phương pháp chặn kết hợp với lập bảng chi tiết như sau:
Bước 1: Chặn để giới hạn nghiệm cần tìm trong một khoảng nào đó.
Bước 2: Kết hợp với điều kiện lập bảng tìm nghiệm nguyên
Bước 3 kết luận:
Giải:
\(x^2\) + y2 + 2\(x\) = 17
\(x^2\) + y2 + 2\(x\) + 1 = 17 + 1
(\(x^2\) + 2\(x\) + 1) + y2 = 18
(\(x\) + 1)2 + y2 = 18
Vì y2 ≥ 0 ∀ y nên 0 ≤ y2 ≤ 18
Vì y \(\in\) Z nên y2 \(\in\) {0; 1; 4; 9; 16; 25; ...;}
Vì 0 ≤ y2 ≤ 18 nên y2 \(\in\) {0; 1; 4; 9; 16}
Lập bảng ta có:
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-4; -3); (-4; 3); (2; -3); (2; 3)
Vậy (\(x;y\)) = (-4; -3); (-4; 3); (2; -3); (2; 3) là nghiệm nguyên của phương trình.